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Abstract 

Mental imagery is one important and powerful mechanism of human cognition that has been little 

explored in AI research.  I present a computational framework for mental imagery which specifies 

the representational and inferential primitives needed to form an imagery-based reasoning system.  

I then present a computational model of mental imagery that uses a novel recursive memory 

structure that I call Recursive Visual Memory (RVM), which provides a purely visual mechanism 

for maintaining a nested sequence of reasoning goals and subgoals.  I tested this model on the 

same set of reasoning problems attempted by Evans’ classic ANALOGY program and show that, 

even without any prior geometric concepts such as shapes or lines, the use of RVM enables 

successful problem solving.  I discuss several disciplines of AI that are commonly conflated with 

mental imagery and show why mental imagery is distinct.  I close by considering broader impacts 

of this work, which include the construction of creative AI systems as well as improved 

understanding of individual differences in human cognition. 

1.  Introduction 

While the existence of visual mental imagery was vigorously debated for much of the late 20th 

century (Kosslyn, Thompson, & Ganis, 2006; Pylyshyn, 2002), findings from neuroscience 

support the idea that mental imagery is a genuine form of mental representation in humans.  

Visual mental representations can be described as being analogical or iconic in nature, in that 

symbols in these representations bear some structured relationship to their referents (Nersessian, 

2008).   

In neurobiological terms, these kinds of analogical visual mental representations are those that 

are instantiated in brain regions containing retinotopically mapped neurons, which are found in 

the visual cortex as well as in other parietal, temporal, and even frontal cortical areas (Silver & 

Kastner, 2009).  Visual mental imagery can be thought of as one particular type of visual mental 

representation that involves top-down neural activations in visual brain regions in the absence of 

corresponding external visual stimuli (Kosslyn, Thompson, Kim, & Alpert, 1995; Slotnick, 

Thompson, & Kosslyn, 2005); this activation in the absence of perception nevertheless resembles 

activation during initial perceptual processing of the stimuli under consideration (O’Craven & 

Kanwisher, 2000).  Furthermore, this type of neural activity plays a functional role in performing 

certain cognitive tasks; if the activity is artificially suppressed, task performance decreases 

(Kosslyn et al., 1999).   
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Verbal representations, on the other hand, based on language or language-like elements, can be 

described as being propositional in nature, as symbols in these representations can stand for 

anything.  In other words, mappings between symbols and referents are arbitrary.  Propositional 

representations are extremely powerful in the kinds of inference they can support, e.g. the 

physical symbol system hypothesis of Newell and Simon proposed that such representations, 

realized in a physical system, are both necessary and sufficient for achieving general intelligence 

(Newell & Simon, 1976).   

In contrast to this view of intelligence as being propositionally driven, many narrative accounts 

about human cognition, found both in informal anecdotes as well as in detailed epistemological 

analyses, maintain that visual representations can contribute directly to high-level reasoning 

through the use of visual mental imagery.  These accounts emphasize the functional role played 

by visual mental imagery in complex tasks such as creativity, analogy, conceptual inference, and 

mental modeling, across numerous domains including engineering design (Ferguson, 1994), 

mathematics (Giaquinto, 2007), and scientific discovery (Nersessian, 2008).  In addition, many 

individuals diagnosed with certain neurodevelopmental conditions such as autism (Grandin, 2006; 

Hurlburt, Happé, & Frith, 1994) and dyslexia (West, 1997) have introspectively observed that 

visual mental imagery seems to be atypically prominent in their cognitive processing (Kunda & 

Goel, 2011). 

 Many AI systems to date rely on propositional representations for high-level reasoning.  Even 

for tasks that may seem suited to visual representations, such as diagram understanding or 

visuospatial reasoning, AI systems often convert visual inputs into propositional representations 

before the reasoning steps take place, e.g. (Chandrasekaran, Banerjee, Kurup, & Lele, 2011; 

Davies, Goel, & Nersessian, 2009; Larkin & Simon, 1987).  This is perhaps partially due to this 

lack of specificity in the cognitive science of mental imagery, and perhaps also partially due to 

the power and ubiquity of symbolic computation on modern digital machines.  There have been, 

of course, some examples in the AI literature that do address visual-imagery-based problem 

solving, such as: 

 Hunt (1974) proposed a theoretical account of visual problem solving on matrix 

reasoning problems in which he argued that symbolic and imagistic approaches must both 

be explored as complementary aspects of dual-process accounts of such problem solving; 

however, no working AI system was built as part of this inquiry.   

 Funt (1980) presents a computational system that reasons visually about problems in a 

blocks-world task domain, using imagery-like operations such as translation and rotation.   

 Glasgow and Papadias (1992) present a computational, though  not ostensibly cognitive, 

model of imagery-based reasoning that uses 3D occupancy grid arrays as a form of 

imagistic representation; their system supports operations such as rotation, translation, 

and zooming, as well as shifting of attention from one part of the representation to 

another.   

 Schwartz and Black (1996) constructed a computational model that simulates reasoning 

over gear-rotation problems using different types of mental representations, including 

performing mental rotations of imagistic representations.   
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 Tabachneck-Schijf and colleagues (1997) present a computational model that combines 

visual and verbal reasoning pathways for diagrammatic reasoning in the context of graph 

understanding.   

 Other examples have come from domains including map understanding (Schlieder & 

Berendt, 1998), reasoning about motion (Croft & Thagard, 2002), reasoning about 

conversational interactions over a set of objects (Roy, Hsiao, & Mavridis, 2004), spatial 

reasoning (Ragni, Knauff, & Nebel, 2005), robot navigation (Stein, 1991), and imagery-

based reasoning within a cognitive architecture (Lathrop & Laird, 2007).   

While most of these models have adopted a symbolic view of cognitive processing, Mel (1986) 

proposed a connectionist view of imagery operations.   

These efforts present models of computational mental imagery in various task domains, with 

varying attention paid to the plausibility of these models in terms of mental imagery in human 

cognition.  In previous work, colleagues and I developed a model of computational mental 

imagery (Kunda, McGreggor, & Goel, 2013) intended to get at basic human problem solving 

processes by looking at the task domain of Raven’s Progressive Matrices, a standardized test that 

represents the best single psychometric measure of general intelligence that has yet been 

developed (Raven, Raven, & Court, 2003; Snow, Kyllonen, & Marshalek, 1984). 

 The purpose of this paper is 1) to extend this previous work by spelling out a computational 

framework for mental imagery that ties together many of the operations used in previous AI 

models, and that have been observed in studies of human cognition, and 2) to propose a new 

mechanism, recursive visual memory (RVM), for imagery-based image segmentation that also 

serves as a way to define and pursue goals and subgoals related to visual problem solving.  The 

domain is that of geometric analogy—a fitting place to start to follow in the footsteps of one of 

AI’s pioneers, Evans (1968). 

 First, I describe a framework for computational mental imagery, including a description of 

reasoning “primitives” that should be supported by mental imagery reasoning systems.  Next, I 

present a description of recursive visual memory (RVM) and how it expands the capabilities of a 

previously developed computational model of mental imagery (Kunda et al., 2013).  I close with a 

discussion of how mental imagery is (and isn’t) related to other areas of investigation within AI, 

and finally with some remarks about the broader implications of this work. 

2.  Computational Mental Imagery 

What is mental imagery?  At its essence, “imagery” refers to the idea of representations as 

analogical—in correspondence with the represented world—as opposed to propositional—of 

arbitrary relationship to the represented world (Nersessian, 2008).  Propositional representations 

are processed in purely syntactic ways, whereas images can be processed according to the rules 

that govern their structure.  For example, a picture of a cat, since it obeys structural rules having 

to do with spatial relationships among its components, can be meaningfully manipulated in spatial 

ways, e.g. by stretching it, turning it upside down, etc.  While imagery can technically take place 

in any modality, in this paper the focus is specifically on visual imagery. 

 One view of human mental imagery is that it is a form of analogical mental model in which the 

referents of imagery are modeled after physical objects in the world, and thus the operations of 
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imagery are grounded in the affordances of manipulating (or observing manipulations of) such 

objects (Schwartz & Black, 1996); this view is consistent with ecological views of the 

development of cognitive capabilities (Shepard, 1984).  The manipulations of a 3D rigid body 

(i.e. objects observed in the world) projected into a 2D plane (i.e. projected through human visual 

perception) correspond to imagery transformations such as translation, rotation, scaling, etc., and 

the combination of projections of multiple such bodies can be represented using set operations on 

points or other elements in the 2D image plane.  Both of these classes of mental imagery 

operations have been observed in human studies. 

2.1  Operations of Human Mental Imagery 

The most well-known early experiments looking at operational properties of mental imagery 

are the mental rotation experiments of the early 1970s (Cooper & Shepard, 1973; Shepard & 

Metzler, 1971).  Many variations on these experiments have been performed, with a recent 

plethora of studies that include neuroimaging measures (Zacks, 2008), but the basic findings have 

been that the reaction time taken by participants to mentally rotate an object is proportional to the 

angular degree through which the object must be rotated.  This finding is replicated in situations 

when two stimuli are both visible for comparison (Shepard & Metzler, 1971) as well as when a 

single visible stimulus is compared to another representation from memory (Cooper & Shepard, 

1973).  There has also been evidence for scaling/zooming (Larsen & Bundesen, 1978) as well as 

translation or scanning (Larsen & Bundesen, 1998). 

Set operations in mental imagery can include manipulations such as union, intersection, and 

complement.  These manipulations correspond generally to the combination of elements of 

mental images in various ways, including: subtraction, in which participants were asked to 

subtract a visually presented shape from a remembered image in order to derive and identify a 

new mental image (Brandimonte, Hitch, & Bishop, 1992b), and combination, in which 

participants were asked to perform a similar identification after combining a new image element 

with a remembered image (Brandimonte, Hitch, & Bishop, 1992a; Finke, Pinker, & Farah, 1989).  

Additional studies have found evidence, in some cases, of verbal coding interfering with this type 

of image transformation (Brandimonte et al., 1992b; Brandimonte, Hitch, & Bishop, 1992c) and 

in other cases, of an interaction between seemingly pictorial depictive representations and non-

pictorial descriptive representations (Hitch, Brandimonte, & Walker, 1995).  

 In a paper looking at mental rotation in autism, another experiment was conducted to examine 

image combination (Soulières, Zeffiro, Girard, & Mottron, 2011).  Participants first inspected and 

memorized an array of visually presented letters and numbers, and then were briefly shown a 

circular segment with a portion of one character inside it.  Then, upon looking at the segmented 

circle alone, the task was to determine which segment would contain a greater visual proportion 

of the original character.  This experiment can be thought of as requiring an operation akin to 

intersection, in visualizing which portion of the character falls into each segment of the circle, as 

if the two were overlaid, and also a comparison of visual similarity in terms of which character 

portion embodies a greater visual area. 
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2.2  Computational Primitives of Mental Imagery 

Thus, we define the following as computational primitives for visual mental imagery.  Notice that 

while this forms a coherent mathematical framework, there is no one “correct” formulation of 

mental imagery.  The unified mathematical framework illustrates that, at least in computational 

terms, the following are equivalent in some sense.  For the purpose of building AI systems, it 

becomes a design choice. 

1. Set S of visual elements with relations that are isomorphic to those of the 2D plane.  This 

excludes diagrammatic representations in which entities have verbal labels, as in these 

representations, the “elements” are not visual.  This also excludes propositional 

representations, which do not contain an inherent system of relations among knowledge 

elements.  There are many forms that these visual elements could take, including: 

a. Points.  Pixels are one example, but note that this scheme does not need to be 

restricted to rectilinear arrangements of points.  Consider the cells of the visual 

cortex as an alternative example. 

b. Corners, edges, lines 

c. Shapes 

2. A functionally complete collection of combination operations over these elements, such 

as {intersection, complement}. 

3. Geometric operations over connected subsets of these elements.  We define these in 

various classes corresponding to the classes of physical manipulations that they 

correspond to: 

a. Translations 

b. Similitude transformations 

c. Affine transformations 

d. Shape deformations 

 One additional class of possible operations is the set of colorimetric transformations over visual 

elements.  This property could certainly be included in a system of mental imagery, but is not 

included in this framework for the following reason:  a system of mental imagery can be complete 

without color transformations, but a system of mental imagery having only color transformations 

is not.  In other words, the critical property of mental imagery is having systematic 

transformations that preserve spatial relationships among related subsets of planar elements. 

3.  Recursive Visual Memory (RVM) 

In this paper, I build on a previously developed computational model of mental imagery called 

the Affine and Set Transformation Induction (ASTI) model.  I present the model as used for the 

domain of geometric analogies, in the form A : B :: C : ?, like Evans’ early AI work (Evans, 

1968).   

 While this model was originally developed in prior work in a different problem domain, for 

matrix reasoning problems (Kunda et al., 2013), I present here a new version of the model that 

includes a new capability to segment images in a strategic, meaningful way, using purely visual 

representations and transformations to drive the segmentation mechanism.   The model maintains 

this decomposition in an imagery hierarchy, akin to having a goal-subgoal hierarchy that can be 
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expanded or contracted by adjusting working memory constraints.  This type of goal hierarchy 

has been explored in a previous model of solving matrix reasoning problems, and in fact was 

found to be one critical variable contributing to successful problem solving performance on 

difficult problems, but this model used hand-coded propositional representations of the various 

shapes and features in each problem (Carpenter, Just, & Shell, 1990).   

 

 

 
 

Figure 1.  Example geometric analogy problem; image obtained from (Lovett, Tomai, Forbus, & Usher, 

2009, p. 1225). 

 

 The central representation used by ASTI is at the point or pixel level, defined as binary features 

(i.e. black or white pixels).  The primitive imagery operations supported by the model include: 

1. Translation 

2. Discrete rectilinear reflections and rotations 

3. Set operations of union, intersection, and subtraction, defined over binary pixels as OR, 

AND, and NAND, respectively.  Table 1 gives the truth table for these basic pixel 

operations. 

 

Table 1.  Truth table for set operations over binary (black/white) pixels. 

𝒑 𝒒 𝒑 ∪ 𝒒 𝒑 ∩ 𝒒 𝒑 − 𝒒 𝒒 − 𝒑 

0 0 0 0 0 0 

0 1 1 0 0 1 

1 0 1 0 1 0 

1 1 1 1 0 0 

 

 

 There is one higher level operation also: calculating visual similarity.  The ASTI model’s 

conceptualization of visual similarity follows template-based similarity matching in which two 

images are compared according to the amount of visual overlap between them, as one is moved 
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around to various locations relative to the other.  At each relative offset, the similarity is 

computed as the Jaccard coefficient.  Thus, for any two images U and V, and for all possible 

offsets (x, y) between the two images, similarity is calculated as: 

 

sim(𝑼,𝑽) = max
𝒙,𝒚

(
∑ (𝑼𝒊+𝒙,𝒋+𝒚 ∩ 𝑽𝒊,𝒋)𝒊,𝒋

∑ (𝑼𝒊+𝒙,𝒋+𝒚 ∪ 𝑽𝒊,𝒋)𝒊,𝒋

) 

 

One clear simplification in this similarity mechanism is that the model performs exhaustive 
search across all possible offsets (x, y) between the two images.  Humans certainly do not do this, 
nor would this be feasible for efficient artificial agents.  While the heuristics used to guide this 
search are undoubtedly an interesting aspect of the overall cognitive system, the focus of my 
model is on the content of reasoning and not the temporal processing that unfolds.  Thus, these 

questions of heuristics, efficiency, and reaction time are outside the scope of this paper. 
The model takes as input eight individual images:  the three images that constitute the analogy 

and the five answer choices, as shown in Fig. 1.  The model then computes a cascading set of 
comparisons between six pairs of images:  the first pair is A:B, and the rest are between image C 
and each answer choice:  C:N1, C:N2, C:N3, C:N4, and C:N5.   

The basic comparison mechanism in ASTI is to take two images and exhaustively test a set of 

transforms contained in memory to see which transform best accounts for the differences between 
the two images.  The transforms contained in ASTI are:  1) identity, 2) rotate90, 3) rotate180, 4) 
rotate270, 5) flip, 6) rotate90flip, 7) rotate180flip, 8) rotate270flip, 9) add, and 10) subtract.   

Testing transforms #1 through #8 is straightforward.  For any pair of images X and Y, first X is 
manipulated according to the given transform t to produce t(X), and then the similarity metric 
given above is used to compare t(X) to Y.   

For transforms #9 and #10, the process is slightly more complicated.  For transform #9, 
addition, what we are trying to detect is whether Y represents a situation in which something has 
been added to X, and the similarity value generated from the comparison should reflect whether 
Y represents a “pure” addition relative to X.  To obtain this estimate, we first define a dummy 
image Z = Y – X.  Then, to obtain the desired comparison, we compare X – Z and Y – Z.  If Y is 
a strict superset of X, then this comparison yield the maximum similarity value of 1.0.  If X is a 

strict superset of Y, then this comparison yields the minimum similarity value of 0.0.  The 
subtraction transform is defined is a straightforward extension of this approach. 

Using this basic comparison mechanism, ASTI creates a cascading set of comparisons in order 
to solve each analogy problem.  Given a pair of images X and Y, ASTI first computes a basic 
comparison as described above.  Then, ASTI removes all the pixels from each image that have 
been completely explained by the best-fit transformation between these images.  The result is two 

new images, which can then be compared in the same fashion.   This process can continue until all 
pixels have been explained.  This recursive process is what I call “recursive visual memory” 
(RVM). 

Operationally, the process halts when one or the other of the images is completely blank, at 
which point the very next best-fit transform will be a pure addition or subtraction.  Alternately, 
this can occur when the two remaining images are perfectly identical, after which both images 

will be completely blank.  (In practice, a threshold is imposed on the number of possible 
recursions, as little improvement happens after a handful of recursions in this problem domain.)  
Fig. 2 gives detailed pseudocode for this entire process of solving a geometric analogy problem.  
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SolveAnalogy  

Input: images A, B, C, N1 through N5 

Output: number of answer choice (1 through 5) 

1 T = {identity, all rotations and reflections, AddTransform, SubtractTransform}; 

2 dataAB = RecursiveCompare(A,B,T); 

3 for i=1:5 

4 datai = RecursiveCompare(C,Ni,T); 

5 scorei = number of best transforms shared between dataAB and datai; 

6 return i with max scorei over all i; 

  

RecursiveCompare 

Input: images X and Y, set of transforms T 

Output: dataXY 

1 dataXY = m x n array, where m is maxRecursions and n is number of transforms in 

T; 

2 i = 1; 

3 while i < maxRecursions 

4 for each t in T 

5 simt = Compare(t(X),Y); 

6 dataXY[i][t] = simt; 

7 tmax = t with max simt over all t in T; 

8 newX = tmax(X) – Y; 

9 newY = Y - tmax(X); 

10 X = newX, Y = newY; 

11 if X or Y are blank, then halt loop; 

12 else i++; 

13 return dataXY; 

  

Compare 

Input: images X and Y 

Output: similarity 

1 for each possible overlay (i,j) of X and Y 

2 similarityij = X∩Yij / X∪Yij; 

3 return max similarity over all (i,j); 
  

AddTransform 

Input: images X and Y 

Output:  X2 and Y2 for comparison 

1 Compare(X,Y); 

2 (i,j) = position of maximum similarity; 

3 Z = Yij – X; 

4 X2 = X – Z; 

5 Y2 = Y – Z; 

  

SubtractTransform 

Input: images X and Y 

Output:  X2 and Y2 for comparison 

1 Compare(X,Y); 

2 (i,j) = position of maximum similarity; 

3 Z = X - Yij; 

4 X2 = X – Z; 

5 Y2 = Y – Z; 

 

Figure 2.  Pseudocode for analogy problem solving in ASTI model. 
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 Fig. 3 illustrates the contents of the RVM for the example problem shown in Fig. 1 above.  
Note that this figure only shows the RVM for the initial A:B image pair; similar cascades of 
images are computed for image C and each of the five answer choices. 

 Once this cascade has been computed, the A:B cascade is compared for similarity to the 
C:answer cascade for each possible answer choice.  Similarity is computed as a weighted 
combination of the type of transform used to maximize similarity at each step in the cascade and 
the actual similarity value computed at each step. 
 
 

RVM cascade 
for image A 

     

RVM cascade 
for image B 

     

 
Figure 3.  Illustration of contents of RVM for images A and B for the example problem in Fig. 1. 

4.  Experimental Results 

We tested the ASTI model against the twenty cases presented for Evans’ ANALOGY program 

(Evans, 1968).  We obtained the actual problem images from Lovett et al. (2009). 

 Fig. 4 shows the number of problems solved correctly for two different levels of “working 

memory” in the model, defined as the number of RVM recursions that are allowed.  As this figure 

illustrates, as the size of working memory increases from 1 (no image segmentation) to 5, the 

model is able to solve double the number of problems originally solved.  Note that the current 

ASTI implementation is entirely deterministic, which is why the results show no variability. 

 The overall performance of the ASTI model reaches only about 50% on these visual analogy 

problems.  Evans’ model solved 18 of the 20 problems, and more recent attempts have produced 

computational models that have solved all 20 of the problems (Lovett et al., 2009).  However, 

these previous models have relied on human hand-coding of problem inputs for segmentation of 

each problem into distinct elements.  The ASTI model performs this segmentation automatically, 

using the RVM procedure as a mechanism for both segmenting and storing pieces of the problem, 

and then reasoning over them in a sequential fashion. 

 In particular, the ASTI model does not use any preliminary notions of shape, continuity, 

closure, etc. in performing its RVM-based segmentation.  It looks purely at visual similarity and a 

set of mental-imagery-based visual transformations to obtain this segmentation.  Thus, the fact 

that the ASTI model can solve 10 out of 20 problems is not intended as a point of direct 

competition with other models, but rather as a statement about the sufficiency of the set of visual 

mechanisms embodied by the ASTI model in solving these 10 problems. 
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Figure 4.  Number of analogy problems correctly solved by ASTI as a function of the size of ASTI’s 

recursive visual memory (RVM) store. 

5.  Discussion 

The main contributions of this work are twofold.  First, the results of the ASTI model on Miller’s 

test of geometric analogies closes the loop on a long-standing classic in AI, Evans’ 1968 

ANALOGY program, and illustrate how computational mental imagery can solve problems using 

an imagery hierarchy to segment the problem inputs into smaller subproblems.  This is a novel 

capability for computational imagery systems, and an important step towards solving increasingly 

more complex sorts of problems.   

 Second, the framework for organizing primitives of mental imagery is a valuable contribution 

for thinking about how to build mental imagery in AI systems, and also how to relate 

computational imagery to imagery in human or nonhuman animals.  There is often much 

confusion related to mental imagery, in both the cognitive science as well as the AI literature.  In 

the spirit of the classic AI paper that examined relationships between representational 

commitments and intelligent capabilities (Brooks, 1991), we use the remainder of the discussion 

to elaborate on what differentiates mental imagery from other paradigms of cognitive 

processing—in other words, what computational mental imagery is not.  (Of course, most 

complex intelligent processes probably involve many if not all of these kinds of capabilities; we 

present this list mainly to clarify the difference in focus between our work and other bodies of 

strongly-related yet differently-focused AI research.) 

 

 

 

 

0

5

10

15

20

1 5

N
u

m
b

e
r 

o
f 

P
ro

b
le

m
s 

C
o

rr
e

ct
ly

 
S

o
lv

e
d

 

Number of RVM Levels Allowed 



 COMPUTATIONAL MENTAL IMAGERY  

11 

5.1  It isn’t computer vision 

Computer vision uses pixel based representations that are spatially organized and a plethora of 

spatially grounded operations on these pixels, including the operations discussed in our 

framework, and many, many more.  However, the goals of computer vision are different.  

Computer vision is fundamentally about image understanding and is much more tied to questions 

of perception and perceptual inference, and in particular mapping visual inputs onto propositional 

outputs (such as category labels). 

5.2  It isn’t computer graphics 

Computer graphics is closer; it involves the deliberate creation and manipulation of visual 

representations to create new ones.  The biggest difference there is that in computer graphics, the 

intended user of the graphics is a human, and so the process of manipulating images is separated 

from the process of reasoning using those images.  Mental imagery is a unified process with 

image manipulation and reasoning happening in concert.  Furthermore, imagery requires that the 

manipulations are themselves instantiated visually, which is not a requirement for computer 

graphics. 

5.3  It isn’t gestalt perception 

Gestalt perception involves the application of top-down heuristics, often defined by intuitive 

notions of how 3D bodies appear in the world and the physical constraints on them that we 

observe.  However, the study of gestalt information processing has fundamentally been about 

automatic top-down effects on perception, and not about the deliberate top-down manipulation of 

mental representations.  Certainly gestalt perception plays a role in the initial perceptual creation 

of representations that feed our imagery banks, and likely the operations performed within mental 

imagery as well, but the two are distinct processes. 

5.4  It isn’t qualitative reasoning 

Qualitative reasoning often uses visual and spatial relationships.  While these are certainly 

important, the point here is that mental imagery is quantitative, and these quantitative 

representations can support very powerful forms of inference.  When (and how) quantitative 

representations get “thrown over the wall” to form qualitative representations, and vice versa, are 

important open questions for AI and cognitive research.  Any complete account of visual 

reasoning in human-like intelligent systems will need to include both. 

6.  Conclusion 

We envision that continued research on computational mental imagery will lead to new 

paradigms in AI and will also help unlock new avenues of inquiry into human cognition.  While 

mental imagery plays a role in a vastly diverse range of intelligent capabilities, we pinpoint two 

areas—1) mental disorders and 2) creativity—that are currently of high interest to AI and 
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cognitive science research communities, and for which this type of research will have far-

reaching impacts and real-world extensions. 

 Recent studies of autism have raised the possibility that for some individuals on the autism 

spectrum, mental imagery actually dominates cognitive processing, perhaps as a compensatory 

mechanism for early impairments in the neurodevelopmental building blocks of language systems 

(Just, Keller, Malave, Kana, & Varma, 2012; Kana, Keller, Cherkassky, Minshew, & Just, 2006; 

Kunda & Goel, 2011).  Temple Grandin is an individual who describes how she “thinks in 

pictures,” and how this gives her strengths in some areas but difficulties in others (Grandin, 

2006).  Building computational models of mental imagery not only clarifies the information 

processing properties of these tasks but can also lend insight human behavior to aid in the 

diagnosis, assessment, and understanding of cognitive conditions like autism, an approach now 

being dubbed “computational psychiatry” (Montague, Dolan, Friston, & Dayan, 2012). 

 Regarding creativity, there is much recent interest in developing truly creative AI systems, 

from art to science to design.  Theories of human creativity often include mental imagery as a 

critical component, and many case studies of specific creative actors or acts have involved or 

even revolved entirely around mental imagery (Ferguson, 1994; Giaquinto, 2007).  Spelling out a 

theory of computational imagery is the first step towards incorporating it into more and more 

high-level cognitive tasks, until we get to those that can truly be considered acts of creativity. 
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