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Abstract 

One challenge faced by cognitive systems is how to organize information that is learned by 

reading.  Analogical reasoning provides a method for immediately using learned knowledge, and 

analogical generalization potentially provides a means to integrate knowledge across multiple 

sources.  To use analogy requires organizing information into effective cases. This paper argues 

that using connectivity in semantic interpretations to organize knowledge learned by reading into 

overlapping cases can support analogical reasoning with learned knowledge.  Two connectivity-

based methods are described, and their performance is compared with two baselines for the task of 

comparing and contrasting topics included in material the system has read. 

1. Introduction and Motivation 

Cognitive systems need to learn from reading in order to acquire knowledge in a scalable way.  
Solid progress has been made in natural language understanding and knowledge representation 
that enables complex structured information to be extracted from text (e.g. Barker et al., 2007; 

Fan et al., 2012).  A challenge this raises is how such extracted knowledge can be organized for 
reasoning and integration into what a cognitive system already knows.  Analogical reasoning has 
been shown to be useful for robust learning by reading, for decoding instructional analogies 
(Barbella & Forbus, 2011), and for allowing a system to ask itself questions based on analogies 
with prior knowledge  (Forbus et al., 2007). 

Case comparison has been used or proposed for use in other reasoning applications as well 

(Brüninghaus & Ashley, 2001; Peterson, Mahesh, & Goel, 1994; Chaudhri et al., 2014).  This 
suggests that one way of organizing newly read knowledge is to group it into cases – groups of 
facts, treated as a unit – so that it can be used in analogical reasoning and learning. Analogy 
works best with interconnected relational structure, where conceptually related information is in 
the same case.  This suggests going beyond the natural boundaries provided by language – 
paragraphs and sentences – and focusing instead on interconnected facts within the conceptual 

representations produced by semantic interpretation.   
This paper describes two connectivity-based segmentation algorithms and evaluates them by 

comparison with sentence and paragraph level algorithms.  We begin by summarizing the systems 
and representations the system uses. We then introduce four methods for organizing facts into 
cases. Two methods use only natural text boundaries (sentences and paragraphs), and two are 
connection-based. We follow with a description of an experiment and its results, and close with 

related and future work. 
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2. Background 

This section summarizes our learning by reading system, analogical matching, and case 
construction.  We discuss each in turn.   
 Our learning by reading system is based on the Companion cognitive architecture (Forbus, 
Klenk, & Hinrichs, 2009), which provides reasoning facilities (including analogical reasoning) 
that are heavily used during language processing.  We use the Cyc representation language, 

ontology, and knowledge base contents
1
, which provide a large vocabulary of concepts (called 

collections), predicates, and several million facts constraining them.  We use fixed-width font to 
denote symbols and expressions from the system, e.g. (isa solar-panel02 SolarCollector) 

says that the entity solar-panel02 is an instance of the collection (i.e. concept) 
SolarCollector.  Cyc’s language also provides a notion of logical environment via 
microtheories, local contexts linked via inheritance relationships.  Cyc’s inclusion of rich type-

level representations as well as microtheories make it a natural choice for expressing the kinds of 
complex information often communicated via language.   
 Our language processing pipeline uses Allen’s (1994) parser for syntactic analysis.  Syntactic 
and lexical ambiguities are explicitly encoded as choice sets. Our semantic interpretation process 
is based on Discourse Representation Theory (DRT; Kamp & Reyle, 1993), which provides an 
account of scoping, including conditions and counterfactuals, and is central to one of our 

segmentation techniques.  Semantic interpretation builds up discourse representation structures 
(DRSs), each of which is a case containing one or more facts.  These facts describe relationships 
between entities, collections that those entities belong to (i.e. category information), and other 
DRSs.  Each sentence has an associated sentence DRS that contains the facts that represent the 
semantics of that sentence.  Consider “The solar panel cools.”  The sentence DRS constructed for 
it contains three facts. The first, (isa solar-panel02 SolarCollector), indicates that 

there is a solar panel. The symbol solar-panel02 is a discourse variable created by the 
system to represent the solar panel being discussed. The 02 after the name is an integer appended 
to ensure uniqueness, in the event that multiple solar panels are mentioned (the actual ids are 
more complex, but we simplify here for conciseness). The name solar-panel02 is derived 
from the span of text to be human-readable, but means nothing on its own to the reasoning 
system.  The system knows that it is a solar panel because the isa relationship indicates that it is 

SolarCollector, which is a collection in the knowledge base (i.e., a concept). (isa 
cool05 CoolingEvent) is similar. The system reifies events and uses role relations to tie 
the participants in those events to them, as in (objectOfStateChange cool05 solar-
panel02), the third fact generated for the sentence representation.  These facts were generated 
by frames encoding links between linguistic and conceptual knowledge in the KB.  The first fact 
was generated by a frame for the multiword string “solar panel,” and the second and third were 

generated by a frame for the word “cool.” Where there are multiple possible semantic 
representations, the system represents these as choice sets over the different possibilities. 
 
 
 
 

 
 

                                                 
1
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Sentence DRSs can also have constituent DRSs. For example, the sentence “If the valve closes, 
the flow of water stops” mentions a closing event and a stopping event, but does not say that 
either actually happened. If the system produced facts that said that a stopping event occurred and 

that the flow of water was what stopped, it would reach incorrect conclusions. For that reason, 
rather than placing that information directly in the sentence DRS, the system creates two new 
constituent DRSs, one for the antecedent of the statement and one for the consequent. The 
sentence DRS then contains a fact of the form (implies DRS-01 DRS-02).  Constituent 
DRSs are also used to handle negation and hypotheticals.  

The process of semantic interpretation involves constructing DRSs by finding solutions for the 

syntactic and lexical choices.  We use multiple strategies to select among the available choices. 
To factor out any domain or task specific influences, ambiguities were resolved automatically 
using a small set of general-purpose heuristics. For example, the reading system preferred 
interpretations that treat compound noun phrases like “solar panel” as atomic referents when they 
are available, i.e. SolarPanel. An interpretation that interpreted “solar panel” in a more 
general sense – as a generic panel that is in some way related to the sun – would be less preferred. 

Another heuristic prefers interpretations that include more facts over interpretations that include 
fewer. The final fallback heuristic is to choose randomly.   

Given that these heuristics do not involve any learned statistics and are task independent, they 
are surprisingly good. Overall, they selected a correct answer for 86.6% of the 886 lexical choice 
sets generated by the source texts used in this paper.  Errors generated by the heuristics tend to be 
systematic, which helps prevent analogical processing mismatches.  For example, the system 

consistently selected Pipe-SmokingDevice over Pipe-GenericConduit as the 
interpretation of the word “pipe.” This was incorrect; the corpus discusses rainwater collection 
systems and solar heating, but it does not discuss smoking.  In the first occurrence of “pipe”, the 
only applicable heuristic was random choice, and smoking device was selected.  Subsequent 
choices were influenced by a heuristic that prefers concepts already used in the interpretation.  
Hence very similar, albeit partially incorrect, structures were created, facilitating analogical 

comparison. 
 After parsing a source text, the system runs a discourse-level interpretation process that handles 
coreference resolution. The basic strategy used by the coreference system is to resolve pronouns, 

 

Table 1. The simplified version of one paragraph from the corpus. 

 

At the start of each day, the solar heating system is semifull.  

At the start of each day, the rainwater collection system is semifull.  

The rainwater collection system could have some rainwater in it.  

The solar heating system's heat storage is warm because the solar heating system collected heat during the previous day.  

In the rainwater collection system, the valve closes. 

This prevents the flow of the stored water.  

The rain is not falling. 

The water in the pipe has leaked out. 

The sun has not yet risen on the solar heating system.  

The solar collector was exposed to the cold air in the night. 

The heat storage contains heat. 

Because of this, the heat storage's temperature is greater than the air's temperature. 

The control device sensed that the heat storage's temperature was greater than the solar collector's temperature.  

Because of this, the control device shut off the pump. 

This prevented the cooling process of the heat storage. 
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definite references (“the dolphin”), and verbs to the most recent valid referent, as determined by 
common collection membership and a few other factors, such as sharing arguments, in the case of 
verb coreference.  A discourse is a multi-sentence section of a source text considered all together. 

For the work described here, a multi-paragraph chapter from a book and a web encyclopedia 
article were used as the discourses. After coreference resolution, the system places the contents of 
the sentence DRSs from the text into a discourse interpretation DRS, with coreferent items 
resolved to the same symbol. This DRS frequently has many constituent DRSs, as every 
constituent DRS from one of the component sentences becomes a constituent DRS in the 
discourse interpretation. 

 For our experiments, the source text was simplified syntactically (Kuehne & Forbus, 2004). 
This process consists of converting unsupported grammatical structures into supported ones. It 
does not completely eliminate syntactic ambiguity. For example, the source sentence “As for the 
solar heater, the sun has not yet risen” was simplified to “The sun has not yet risen on the solar 
heating system.” Table 1 contains a paragraph from the simplified corpus. The segmentation 
process places no broad-ranging restrictions on the lexicon, although there are occasional 

coverage gaps, particularly where compound nouns are concerned – for example, the unsupported 
“solar heater” became “solar heating system” in the sentence above.  
 Our evaluation involves comparing and contrasting generated cases using analogy. This uses 
the Structure Mapping Engine (SME; Falkenhainer, Forbus, & Gentner, 1989), a computational 
implementation of Gentner’s (1983) structure mapping theory. SME takes two structured 
representations, the base and the target, as input.  These are the two cases that will be aligned with 

each other. It produces one or more mappings, which consist of three parts.  First, mappings 
include a set of correspondences between elements of the base and elements of the target.  
Second, they include a score, which is an estimate of match quality.  SME attempts to produce 
the largest mappings it can that satisfy the constraints of structure-mapping theory.  Each 
mapping also includes candidate inferences, hypotheses formed by filling out the target with parts 
of the base not represented in the target and vice versa. For our evaluation, the score is used to 

determine which mapping is the best. The correspondences of that mapping can be thought of as 
things that the cases have in common, and the candidate inferences can be thought of as salient 
differences between the two cases. Because SME can project inferences in both directions, which 
case is the base and which is the target is immaterial.  
 Dynamic case construction (Mostek, Forbus, & Meverden, 2000) is the process of building 
cases automatically from a body of knowledge. Almost all case-based reasoning systems require 

cases to be constructed by some external process. These are sometimes hand-curated, but this 
does not scale well.  The ability to build focused cases from larger knowledge sources avoids 
manual curation, especially when combined with natural language understanding. The methods 
we describe in this paper – particularly fact-based segmentation - can be thought of as extensions 
of dynamic case construction for learning by reading.  Specifically, the case construction methods 
all work by starting with a seed – an entity or concept about which relevant facts are to be 

gathered – and proceed by collecting statements in the knowledge base that mention the seed, 
filtering by those facts, and recursing outward from other entities mentioned in those facts, out to 
some depth limit.  Instead of going to the knowledge base, here we gather facts from the 
interpretation of a text. 
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3. Algorithms 

To build cases from semantic representations, we developed two connection-based algorithms 
that make use of properties of the knowledge in the interpretation, and two simpler algorithms 
that use only naturally-occurring boundaries in text to serve as baselines. All four algorithms start 
with the same input. The system reads a chapter from a source text and produces the discourse 
interpretation.  Regardless of algorithm, each case is built around a seed, which is a single 

mention of a single entity in the source text. For example, the term “solar heating system” in the 
sentence “At the start of each day, the solar heating system is semifull” was one seed that was 
used, and we will use this seed as an example throughout this section. The system generates cases 
for each possible seed (i.e., each entity that is mentioned) in the source text.  

We start with the baselines, as they are simpler.  The simplest algorithm is Local Sentence 
Interpretation (LSI), which uses the interpretation of the sentence that mentions the seed 

(including any constituent DRSs) as the case. This makes intuitive sense as a baseline, because 
most English-language sentences are generally about a single thing. It is also inexpensive, 
because no additional computation is required beyond what goes into producing the sentence 
interpretation in the first place. However, a limitation of this method is that important information 
about an object or situation is often spread over multiple sentences.  

The second baseline algorithm, Local Paragraph Interpretation (LPI), is similar, but uses all of 

the facts derived from all of the sentences in the paragraph of the source text that the seed appears 
in. The local paragraph interpretation method is much less likely to miss important information 
about the seed, but it has two potential disadvantages. First, a paragraph can cover multiple 
topics, which increases the amount of noise in the case. Second, it may be less useful for 
comparing two seeds from the same paragraph because the cases will be identical, and SME will 
tend to match most facts with themselves.  The match is done with a requirement that the seed 

entities, which are not identical, align, which helps.  For our example seed, the case created by 
this algorithm is very large and covers a broader range of topics, as it contains the facts built from 
all 15 sentences in the paragraph. 

 The last two methods we propose exploit connectivity properties of the conceptual 

representation of the semantics of the sentence. The first is Sentence-Based Segmentation (SBS), 

which works as follows: 

1. Find each sentence that the entity is mentioned in.  

2. For each of these sentences, find the facts in the discourse interpretation derived from those 

sentences, including the constituent DRSs. This may include facts that do not mention the 

entity itself.  Add these facts to the case, preserving DRS membership.   
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Table 2 contains the 28 facts, drawn from three sentences, that sentence-based segmentation 
produced using our example seed. 

 The second connection-based case construction method we propose is Fact-Based 

Segmentation (FBS). This method is inspired by the method described in Mostek et al. (2000), but 

it has been adapted to use the interpretations produced by the language system. It operates as 

follows: 

1. Choose a maximum depth, i.e. how far the algorithm will travel when recursively gathering 

facts in the interpretation.  A depth of 1 only includes the facts which explicitly mention the 

 

Table 2. The facts that were included in a case built using the Sentence-Based Segmentation method. 28 facts were 

included in total, across 4 DRSs. Representations simplified for space and readability. Note that some facts, such as 

the ones that include ObservenceDay and Surgery, are incorrect interpretations. Because the interpretations 

are generated completely automatically, they contain some word sense errors. The facts shown here were derived 

from that sentence and from “We examined the elements of a solar heating system” and “At the start of each day, 

the solar heating system is semifull.” 

 

Holds in Discourse-DRS-01: 
(evaluee-Direct compare02 rainwater-collection-system03)  

(evaluee-Direct compare02 solar-heating-system01)  

(evaluee-Direct examine04 element05) 

(fullnessOfContainer solar-heating-system01 PartiallyFull) 

(implies-DrsDrs DRS-02 DRS-03)  

(isa compare02 Comparing) 

(isa day06 ObservanceDay)  

(isa examine04 Inspecting)  

(isa group-of-element05 Set-Mathematical)  

(isa solar-heating-system01 SolarHeatingSystem)  

(performedBy compare02 we07)  

(performedBy examine04 we08  

(possessiveRelation day06 start09)  

(startingPoint day06 start09)  

(temporallyIntersects start09 (StartFn be10))  

(willBe DRS-04) 

 

Holds in DRS-02: 
(member element05 group-of-element05) 

 

Holds in DRS-03: 
(isa element05 ElementStuffTypeByNumberOfProtons) 

(isa solar-heating-system01 SolarHeatingSystem) 

(possessiveRelation solar-heating-system01 element05) 

 

Holds in DRS-04: 
(conceptuallyRelated day11 Normal-Usual)  

(evaluee-Direct examine04 solar-heating-system01)  

(isa solar-heating-system01 SolarHeatingSystem)  

(performedBy examine04 we08)  

(temporallySubsumes day11 operate12)  

(isa day11 ObservanceDay)  

(isa examine04 Inspecting)  

(isa operate12 Surgery)  
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seed, a depth of 2 adds all facts that mention entities mentioned in the facts at depth 1, and 

so on. 

2. Add the seed entity to the case with a depth of 0. (Depth counts up, until the maximum 

depth is reached.)  

3. Identify the collections that the entity belongs to, by examining the isa statements that 

mention it, and add those to the case plus the isa statement itself. For each entity in the 

same paragraph that is a member of that collection, add that entity at depth +1. 

4. Identify the other facts that mention the entity. Add them to the case with a depth equal to 

the entity’s depth +1. 

5. If the entity is a constituent DRS, add the facts it contains to the case at the same depth. 

This ensures that if a DRS is mentioned, it is included in the case. 

6. For each constituent DRS that contains a fact in the case, add that constituent DRS and the 

other facts it contains to the case at the same depth. 
7. For each entity mentioned in one of the facts added in step 4-6, add that entity to the case at 

a depth equal to the depth of the fact that mentions it.  

8. For each entity added in step 3-7, repeat steps 3-7, stopping when it is not possible to add 

anything else to the case without exceeding the maximum depth. 

While this method has several steps, what it does is relatively straightforward. It begins with a 

seed, like the other methods. Recall our example seed, the term “solar heating system” in the 

sentence “At the start of each day, the solar heating system is semifull.” The algorithm begins by 

including the discourse variable derived from that seed – solar-heating-system01 – in 

the case. When an entity is mentioned in the case, facts that mention that entity are added to the 

case. This means that the facts (fullnessOfContainer solar-heating-system01 

PartiallyFull) and (isa solar-heating-system01 SolarHeatingSystem) 

are added to the case, in the contexts they appear in. The first appears in the top-level DRS, 

Discourse-DRS-01, and the second also appears in several constituent DRSs, including 

DRS-08. When a collection is mentioned in the case, entities mentioned in the paragraph that 

belong to that collection are added to the case, e.g. if there were other instances of 

SolarHeatingSystem, they would be added. When a constituent DRS is mentioned in the 

 

Table 3. A subset of the facts in a case constructed via Fact-Based Segmentation. 48 facts were added in total, across 8 

DRSs. Representations simplified for space and readability. 

 

In Discourse-DRS-01: 
(isa solar-heating-system01 SolarHeatingSystem) 

(fullnessOfContainer solar-heating-system01 PartiallyFull)  

(isa flow15431 FluidFlow-Translation) 

(isa prevent15 (PreventingFn flow16)) 

(primaryObjectMoving flow16 water17) 

(not DRS-08)  

 

In DRS-08: 
(isa rise13 AscendingEvent)  

(isa solar-heating-system01 SolarHeatingSystem)  

(objectMoving rise13 sun14)  

(on-UnderspecifiedSurface sun14 solar-heating-system01) 
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case, facts that mention that constituent DRS and facts inside that constituent DRS are added to 

the case. Here, when DRS-08 is added to the case, (not DRS-08) is added to the case. When 

a fact contained in a constituent DRS is in the case, the rest of that constituent DRS is added to 

the case. Because the case contains a fact in DRS-08, this rule adds the other facts in DRS-08.  

The depth costs results in constituent DRSs (but not top-level sentence DRSs) being added to 
cases all at the same depth. Adding a complete constituent DRS is crucial for accuracy.  For 
example, consider the sentence “When the temperature of the heat storage equals the temperature 

of the solar panel, the heat does not flow.” Leaving out any part of the DRS constituent structure, 
e.g. the antecedent information or the negation, would change the meaning of the sentence. 
 A depth of 3 was chosen based on examinations of pilot data, as reasonable tradeoff between 
including too much versus too little information. For our example seed, a depth of 3 yielded a 
case with 48 facts (see Table 3), while a depth of 2 yielded a case of 37 facts and a depth of 4 
yielded a case of 60 facts.   

 We expect that the advantage of this method is that it incorporates connections across multiple 
sentences. This is potentially useful in cases where a topic is only mentioned once, but is 
elaborated upon across several sentences. While some sentences that elaborate on a topic may 
continue to refer to it directly, there may be relevant information in sentences that do not. For 
example, in “The dolphin often has one calf. The calf is weaned after one year,” if the seed being 
used is the instance of “dolphin” in the first sentence, sentence-based segmentation will not 

include any information from the second sentence, as it does not mention the dolphin. 

4. Evaluation 

For evaluation we use a compare and contrast task, as this is one of the simpler kinds of 

analogical reasoning, and it has interesting potential applications (Brüninghaus & Ashley, 2001; 
Peterson et al., 1994; Chaudhri et al., 2014). Given two entities in the text, the system compares 
and contrasts cases generated using those entities as seeds.  For differences, we use the notion of 
alignable differences (Gentner & Gunn, 2001), which have been shown to be psychologically 
salient. These are differences between cases that are conceptually related to their commonalities.  
In SME, candidate inferences provide alignable differences.  Comparisons are evaluated against a 

hand-generated gold standard of lists of important similarities and differences, generated 
beforehand.  We created two corpora from pre-existing source texts, described next. 
 The first source text chosen was chapter 16 of Sun Up to Sun Down (SUSD; Buckley, 1979), a 
book about solar energy and solar heating that makes extensive use of analogies.  Chapter 16 was 
chosen because it uses an extended analogy to explain a solar heating system in terms of a 
rainwater collection system.  The simplified version of the chapter consists of 80 sentences in 11 

paragraphs (Table 1 shows one paragraph).  The interpretation process produced 733 facts across 
54 DRSs. 

The second source text chosen was a Diffen article that compares and contrasts dolphins and 
porpoises (Dolphin vs. Porpoise).  Diffen is an online, user-editable encyclopedia whose articles 
compare and contrast similar topics. This particular article was chosen because it differed in both 
style and subject matter from the other source text.  After simplification, the article was 8 

paragraphs and 88 sentences long. The interpretation process produced 751 facts across 150 
DRSs.  

Pairs of seeds were chosen for which the similarities and differences would be illuminating, 
based on the information available in the texts. For example, after reading the SUSD text, the 
system was tasked with contrasting the state of a solar heating system at different points during 
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the day and comparing the solar heating system to an analogous rainwater collection system. All 
of the tasks related to the Dolphin/Porpoise text involved comparing different aspects of the two 
creatures, such as their physical anatomy or mating habits. While the system is capable of 

comparing any pair of objects or events to each other, in most cases arbitrary comparisons are not 
very interesting. In total, 24 comparisons were made, 11 from the SUSD text and 13 from the 
Dolphin/Porpoise text. In every comparison, the seeds were required to correspond, i.e. every 
mapping that SME produced had to put them into alignment.   
 For each comparison, 2 to 15 goal facts were written per comparison, prior to running any of 
the methods over them. Across the 24 comparisons, 125 goal facts were used in total. 70 of these 

came from the SUSD text, and 55 from the Dolphin/Porpoise text. Each goal fact represented one 
similarity or difference in the text. The score for a method, given a pair of cases, was equal to the 
number of goal facts that it found. Similarities were scored if the similarity was among the 
correspondences produced by SME. Differences were scored if the difference was among the 
candidate inferences produced by SME. For example, when cases produced from our example 
seed were compared to a rainwater collector system seed, all of the methods produced a 

correspondence between 
 

(holdsIn Discourse-DRS-01  

(fullnessOfContainer solar-heating-system01 PartiallyFull)) 

 

and 

 

(holdsIn Discourse-DRS-08 

(fullnessOfContainer rainwater-collection-system01 PartiallyFull) 

 

(These facts were derived from “At the start of the day, the solar heating system is semifull” and 
“At the start of the day, the rainwater collection system is semifull,” respectively.) This indicates 

that the system could tell that one of the commonalities between the rainwater collection system 
and the solar heating system, in the scenario being described, is that they’re both partially full. 
The holdsIn predicate indicates that the facts are true in the indicated DRS. The goal facts 
were constructed compositionally to reward more complete answers while still providing some 
credit for partial answers. For example, rather than using “In the second case, heat flows from the 
solar collector to the storage tank” as a single example of differences between two cases, it is 

broken into three statements: One saying that a flow of heat exists, which appears as a fact of the 
form (objectMoving flow01 heat15), one saying that that flow leaves from the solar 
collector, which appears as a fact of the form (fromLocation flow01 solar-

collector24), and one saying that flow goes to the storage tank, which appears as a fact of 
the form (toLocation flow01 storage-tank35). Simple features were not included 
as goal facts to be found. For example, when comparing a solar heating system’s operation at 

different times of the day, the fact that it is a solar heating system in both cases was not among 
the goal facts. All goal facts were relationships between two entities. 
 Alternate evaluation metrics were considered.  Simply looking for the presence of important 
facts in cases would not be effective, because facts must show up in both cases in a comparison 
and must be alignable to be useful.  We also compute generation efficiency, which is the 
percentage of correspondences and candidate inferences that were used to produce goal facts. 

This penalizes including facts that were not useful for this compare and contrast task, although 
such facts might be useful for other tasks. 
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 The results appear in Table 4. The results from the two source texts have been combined, as 
they were generally comparable across the board. Each column presents results for one of the 
methods described earlier – Local Sentence Interpretation (LSI), Local Paragraph Interpretation 
(LPI), Sentence-based segmentation (SBS), and Fact-based Segmentation (FBS). Total Correct is 
the number of the goal facts the method produced. Correct (%) is the percent it got correct. 
 Unique Correct is the number of goal facts where the method was the only one of the four that 

correctly produced it, a measure of each method’s ability to produce interesting conclusions that 
the others did not. In some instances, including most instances when LPI was the only method to 
produce a goal fact, it is because the other methods did not include the relevant facts. In other 
instances, such as the when SBS was the only method to produce the goal fact, one or more of the 
other methods did include the relevant facts, but failed to produce the proper correspondence or 
candidate inference. 

 Avg. Case Size is the average size of the bases and targets produced by the system when 
constructing cases based on the seeds. As there is no functional difference between bases and 
targets for this task (candidate inferences are produced in both directions), their sizes are simply 
averaged together in the table.  Average CIs and Average Corrs are the average number of 
candidate inferences and correspondences, respectively, produced by the system when comparing 
cases generated using the method. The number of correspondences produced is fairly high 

compared to size of the cases because it includes not only fact correspondences, but entity and 
predicate correspondences. Two complex facts that align with each other can be made up of 
several different correspondences, as their constituents must also be in alignment, according to 
structure-mapping theory. 
 The accuracy of FBS and LPI were very similar. While the two methods found different sets of 
goal facts, the difference in their overall performance was not statistically significant. The 

difference between the performance of LSI and the other three methods was statistically 
significant (p < 0.005), as was the difference between SBS and the other three.  In total, 100 of the 
125 goal facts (80%) were produced by at least one of the methods. 
 One of the theoretical weaknesses of LPI is that, because it produces pairs of cases that contain 
all of the same facts when operating on pairs of seeds from the same paragraph, its performance 
may suffer in those instances. Because the seeds (which are different) are automatically mapped 

to each other, it can (and did) still produce some useful correspondences and candidate 
inferences. However, we might suspect that it may be disadvantaged. To test this, we looked at 
the results on only the comparisons made between entities in the same paragraph. In total, 65 goal 

 

Table 4. Experimental Results 

 
Method LSI LPI SBS FBS 

Total Correct 27 81 59 88 

Correct (%) 21.6 64.8 47.2 70.4 

Generation 

Efficiency (%) 

3.6 1.1 4.7 1.9 

Unique Correct 0 8 3 8 

Avg. Case Size 8.9 107.2 16.1 66.8 

Average CIs 8.4 49.9 19.5 52.0 

Average Corrs. 19.6 222.3 29.9 118.6 
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facts came from comparisons of this type. The accuracy on just those goal facts is shown in Table 
5. LPI’s performance is worse than on the full set, but the difference is not statistically significant, 
and the difference between LPI and FBS on this limited set is also still not significant. 

 One of the difficulties with evaluating the system’s overall performance is that assigning blame 
for failures is not easy. For the 20% of the goal facts that no method produced, there are several 
possible sources of error. First, the goal fact might be one that could be produced by a correctly 
assembled case, but was not produced by the cases generated by any of the methods used in the 
experiment. When this is true, further improvements to the case constructor methods could 
produce better results. 

 Second, if the formats of the facts are sufficiently different so that SME cannot align them 
properly, then matches will be suboptimal.  This can occur if, for example, what should be similar 
semantic frames are represented in different ways.  Repairing such issues would require 
rerepresentation (Yan, Forbus, & Gentner, 2003). Table 6 summarizes the sources of error for 
each of the methods. Each goal fact missed by a method was assigned a source of error, which 

sometimes varied from method to method. For example, LSI can miss a similarity goal fact by 
failing to include the facts in the cases to begin with, while FBS can miss the same goal fact by 
including the corresponding facts, but they don’t align when the cases are compared via SME. 
Some types of errors can occlude other types. For example, if a case construction method fails to 
include the relevant facts when building the case, it is impossible for those facts to end up being 
mismatched in the SME mapping. 

Facts Not In Interpretation means that the facts required to build a particular correspondence or 
contrast were not present in the global interpretation at all. This error occurred when a goal fact 
was looking for a fact that could be inferred from the text, but which was not explicitly in the text. 
For example, causation is not always explicitly spelled out. Even if it could be inferred from 
context, the system does not currently do this additional reasoning. Because the absence of a key 
fact from the interpretation makes it impossible for any of the methods to produce a correct 

response, the same seven goal facts were missed by each of the methods as a result of this error. 
An example of this occurred when the system was asked to compare the rainwater collection 
system when it is only lightly raining to the solar heating system early in the morning, when only 

 

Table 6. Sources of error. 

 
Method LSI LPI SBS FBS 

Facts Not In Interpretation 7 7 7 7 

Facts Not In Case 85 1 49 11 

SME Representation Mismatch 2 4 2 4 

Wrong Interpretation Choice 2 2 4 3 

SME Alignment Mismatch 2 27 6 12 

 

Table 5. Experimental results on cases where the base and target seeds are in the same paragraph. 

 
Method LSI LPI SBS FBS 

Total Correct 20 35 33 41 

Correct (%) 30.8 53.8 50.8 63.1 
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a little sunlight falls onto its solar panel. One of the goal facts was “There is a reason that only a 
little bit of rain/sunlight is collected.” While this is something that could be inferred from the text 
by a human reader, the text does not make an explicit connection between the low amount of 

incoming rain/sun and the fact that the systems don’t collect very much. As a result, there are no 
causation facts in the discourse interpretation to be aligned. No matter what combination of other 
facts a segmentation method includes, SME cannot align things that are not there. 

Facts Not In Case refers to when key facts were in the global interpretation, but not included by 
the case construction method. Unsurprisingly, the methods that build larger cases were less likely 
to produce such errors. This error accounts for the vast majority of the instances where LSI failed 

to produce a result, as any goal fact that needed information from another sentence would fail.  
SME Representation Mismatch refers to when facts representing a similarity were present in the 

base and target, but were sufficiently different representationally that SME did not match them 
together. Note that while LPI and FBS missed more goal facts as a result of this error, they are not 
more likely to produce representation mismatches. All four case construction methods build from 
the same global interpretation, and all use the same representations as a result. The reason that 

LPI and FBS had more mismatches is that sometimes LSI and SBS did not include any relevant 
facts at all. An example of where this occurred was when the system compared the rainwater 
collection system to the solar heating system while both are operating. The rainwater collection 
system is collecting rainwater, and the solar heating system is collecting heat. One of the 
similarity goal facts was that both the rainwater and the heat are being collected. However, the 
way the source text phrases the sentences that provide this information resulted in different 

representations. The text says that the solar collector “absorbs the sunlight” (“solar radiation is 
absorbed,” in the pre-simplified version). Because the representations produced for absorption 
events are not similar to the representations used for falling events, the fall of rainwater onto the 
system’s collection tray does not align with the absorption of heat by the solar panel. 

Wrong Interpretation Choice is similar to SME Representation Mismatch, but refers to 
situations where the mismatch can be traced to the disambiguation heuristics making an incorrect 

choice. As noted above, the heuristics used were far from perfect; fully 13.4% of the semantic 
ambiguities were resolved incorrectly. However, the numbers show that, most of the time, these 
mismatches did not affect the SME matches.  

SME Alignment Mismatch refers to when the base and the target both contain the necessary fact 
or facts to identify a similarity or difference, but SME did not produce an appropriate 
correspondence or candidate inference because the match did not align appropriately. An example 

of this error occurring is when the system was asked to compare the anatomy of the dolphin and 
the porpoise. One of the goal facts is that dolphins have long noses, while porpoises have flat 
noses. Because these facts appeared in the same paragraph, LPI produced a base and a target that 
both included both cases. While it aligned dolphin with porpoise, as constrained by the question 
asked, it did not align the dolphin’s nose in the base with the porpoise’s nose in the target. Rather, 
it aligned the dolphin’s nose in the base with the dolphin’s nose in the target, and did the same 

with the porpoise’s nose. As a result, no candidate inferences were drawn. 

5. Conclusions 

The results suggest that Fact-Based Segmentation and Local Paragraph Interpretation are the best 

of the four methods tested. FBS had the advantage that it produced the most accurate results while 
achieving a significantly higher generation efficiency than LPI. This comes at the cost of a small 
amount of additional overhead during the case construction step, as producing cases with FBS 
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requires extra computation. In the evaluation, LPI had very little trouble with Facts Not In Case 
errors. This is because the goal facts were all local. In a comparison where facts are spread more 
evenly across a source text, it would be less effective. 

That Local Sentence Interpretation fared the worst is not surprising. While it produced 
relatively little noise, as indicated by its high generation efficiency, information is spread across 
multiple sentences too frequently for it to get the information required to make broader 
comparisons between two entities. Even in situations where smaller cases are desirable, Sentence-
Based Segmentation produced much better results with only moderately larger cases. 

There appears to be a tradeoff between accuracy and generation efficiency. This result is 

reasonable; methods that produce more facts are less likely to produce the Facts Not In Case 
error, provided that the additional facts being added are at least potentially useful. There are 
instances where including additional facts in the case produced SME Alignment Mismatch errors, 
but at the case sizes produced by the four methods described here, those are rarer. 

6. Related Work 

Case-based reasoning (Schank & Cleary, 1994) involves using existing cases to solve problems 
and answer questions. Such systems tend to use domain-specific retrieval and matching systems, 
unlike our use of a general-purpose analogical matcher, SME.    
 Compare&Contrast (Liu, Wagner, & Birnbaum, 2007) uses the web as a source to find cases 

similar to a seed case. Rather than parsing the entire source, it builds vectors of named and non-
named entities to represent the contents.  Such feature-based representations cannot support the 
kinds of explanation generation that we can, given our use of relational representations. 
 Our approach to learning by reading focuses more on producing comprehensive structured 
representations than some other systems (at the cost of additional computational overhead). 
DART (Clark & Harrison, 2009), NELL (Carlson et al., 2010), and KNEXT (Van Durme & 

Schubert, 2009) represent other efforts in knowledge extraction, producing logical forms. These 
systems handle a broader range of syntax than the system described in this paper, but the 
representations produced are simpler. The PRISMATIC knowledge base, used in IBM’s Watson 
project (Fan et al., 2012), uses a simpler representation strategy, treating words themselves as 
predicates. This is good for factoid question answering, but less so for reasoning tasks. West et al. 
(2014) describe a system for targeting the web with specific queries in order to extend Freebase 

(Bollacker et al., 2008), filling in certain types of missing knowledge. All of these systems use a 
less expressive representational vocabulary than our combination of DRT and Cyc provide. 

KA (Peterson et al., 1994) is a proposed system that resembles ours in that it would construct 
cases from texts and compare them to other cases. This would allow the system to diagnose errors 
in the design of physical systems. The work described here aims to be more general, and is not 
tied to any particular domain. 

Textual CBR systems have generally focused on building cases from text resources with the 
goal of using them as pointers to those text resources, rather than building formally represented 
cases that can be used for reasoning, as the work we describe here does. Generally this has 
involved minimal NLP. Brüninghaus and Ashley (2001) describe SMILE, which uses methods 
for using NLP in the law domain to build more sophisticated cases that can be more accurately 
compared to each other, compared to methods that use bag-of-words techniques, but relies on a 

human to identify which features are important. Gupta and Aha (2004) describe FACIT, a TCBR 
system that uses logical forms as its representations. Like most TCBR systems, it operates by 
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using the generated cases to index complete texts, rather than reasoning directly over the cases 
produced. 
 Analogical Dialogue Act classification (Barbella & Forbus, 2011) has been used to construct 

cases from textual analogies by classifying sentences based on their role in establishing or 
extending an analogy, and then using those classifications to determine what statements are part 
of the base and target of the analogy. Like the methods described in this paper, it makes use of 
connectivity properties of semantic interpretations. 

7. Future Work 

One of the properties of the fact-based segmentation method is that it depends on coreference 
resolution, an area where our language system could use improvements.   Currently fact-based 
segmentation uses common collection membership as a method for picking up on topic similarity 
even where entities are not coreferent; exploring additional means of handling this is one area 

where the algorithm could be further refined. We also plan to explore whether further 
improvement is possible by synthesizing our two connection-based methods into a single method. 
 Another possible avenue for exploiting the cases produced is to combine them with analogical 
retrieval (Forbus et al., 1997; Forbus, Gentner, & Law, 1995) to answer other types of questions 
via analogy (e.g. Klenk & Forbus, 2009).  Learning more general models of concepts via 
analogical generalization (McClure & Forbus, 2012) would also be another way to use cases 

constructed via these methods. 
 We are currently extending the results in Barbella and Forbus (2011) to make use of a variant 
of fact-based segmentation as part of building cases that represent the base and the target of an 
explicitly stated analogy. This requires recognizing certain facts as ones which introduce 
correspondences between the base and the target, and handling those as exceptions. 
 Currently, the system produces cases for every possible seed after it reads. It can also produce a 

set of cases for a particular seed that is targeted. One potential extension for the system is to 
identify which entities are likely to be the most useful seeds for cases. For example, the entity that 
names the topic of a paragraph may be more useful as a seed than an arbitrary entity from later in 
that paragraph. 

Acknowledgements 

This research was supported by a grant from the Intelligent and Autonomous Systems Program of 
the Office of Naval Research. 

References 

Allen, J. F. (1994). Natural language understanding (2nd Ed.) Redwood City, CA: 
Benjamin/Cummings.  

Barbella, D., & Forbus, K. (2011). Analogical dialogue acts: Supporting learning by reading 
analogies in instructional texts. Proceedings of the Twenty-Fifth AAAI Conference on Artificial 

Intelligence (pp. 1429-1435). San Francisco, CA: AAAI Press.  

Barker, K., Agashe, B., Chaw, S., Fan, J., Glass, M., Hobbs, J., Hovey, E., Israel, D., Kim, D., 
Mulkar, R., Patwardhan, S., Porter, B., Tecuci, D., & Yeh, P. (2007). Learning by reading: A 
prototype system, performance baseline, and lessons learned. Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (pp. 280-286). Vancouver, BC: AAAI Press.  



EXPLOITING CONNECTIVITY FOR CASE CONSTRUCTION FOR LEARNING BY READING 

15 

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: a collaboratively 
created graph database for structuring human knowledge. Proceedings of the 2008 ACM 
SIGMOD international conference on Management of data (pp. 1247-1250). ACM. 

Brüninghaus, S., & Ashley, K. D. (2001). The role of information extraction for textual CBR. 
Case-based reasoning research and development (pp. 74-89). Springer Berlin Heidelberg. 

Buckley, S. 1979. Sun Up to Sun Down. New York, NY: McGraw-Hill. 

Carlson, A., Betteridge, B., Kisiel, B., Settles, E. R., Hruschka, E. R., & Mitchell, T. M. (2010). 
Toward an architecture for never-ending language learning. Proceedings of the Twenty-Fourth 
AAAI Conference on Artificial Intelligence (pp. 1306-1313). Atlanta, GA: AAAI Press. 

Clark, P., & Harrison, P. (2009). Large-scale extraction and use of knowledge from text. 
Proceedings of the Fifth International Conference on Knowledge Capture (pp. 153-160). 
Redondo Beach, CA: ACM. 

Chaudhri, V., Heymans, S., Spaulding, A., Overholtzer, A., & Wessel, M. (2014). Large-scale 
analogical reasoning.  Proceedings of the Twenty-Eighth AAAI Conference on Artificial 
Intelligence (pp. 359-365). Québec City, QC: AAAI Press. 

Dolphin vs Porpoise. (n.d.). Retrieved February 9, 2015, from 
http://www.diffen.com/difference/Dolphin_vs_PorpoiseFalkenhainer, B., Forbus, K., & 
Gentner, D. (1989). The structure-mapping engine: Algorithm and examples. Artificial 
Intelligence, 41, 1-63. 

Fan, J., Kalyanpur, A., Gondek, D.C., & Ferrucci, D.A. (2012). Automatic knowledge extraction 
from documents. IBM Journal of Research & Development, 56, 5:1-5:10. 

Forbus, K., Gentner, D., Everett, J. O., & Wu, M. (1997). Towards a computational model of 
evaluating and using analogical inferences. Proceedings of the Nineteenth Annual Conference 
of the Cognitive Science Society (pp. 229-234). 

Forbus, K., Gentner, D., & Law, K. (1995). MAC/FAC: A model of similarity-based retrieval. 
Cognitive Science, 19, 141-205. 

Forbus, K, Klenk, M., & Hinrichs, T. (2009). Companion Cognitive Systems: Design goals and 

lessons learned so far. IEEE Intelligent Systems, 24, 36-46. 

Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K., Sharma, A., & Ureel, L. (2007). 
Integrating natural language, knowledge representation and reasoning, and analogical 
processing to learn by leading. Proceedings of the Twenty-Second AAAI Conference on 
Artificial Intelligence (pp. 1542-1547). Vancouver, BC: AAAI Press. 

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 

7, 155-170.  

Gentner, D., & Gunn, V. (2001). Structural alignment facilitates the noticing of differences. 
Memory and Cognition, 29(4), 565-577. 

Grishman, R., Macleod, C., & Wolff, S. (1993). The COMLEX Syntax Project. Ft. Belvoir: 
Defense Technical Information Center. 

Gupta, K. M., & Aha, D. W. (2004). Towards acquiring case indexing taxonomies from text. 

Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society 
Conference (pp. 172-177). Clearwater Beach, FL: AAAI Press. 

Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to model-theoretic 
semantics of natural language. Boston, MA: Kluwer Academic.  



D. BARBELLA AND K. FORBUS 

16 

Klenk, M., & Forbus, K. D. (2009). Domain transfer via cross-domain analogy. Cognitive 
Systems Research, Special Issue on Analogies: Integrating Cognitive Abilities, 10(3), 240-250. 

Kuehne, S., & Forbus, K. (2004). Capturing QP-relevant information from natural language text. 

Proceedings of the Eighteenth International Qualitative Reasoning Workshop. Evanston, IL.  

Liu, J., Wagner, E., & Birnbaum, L. (2007). Compare&Contrast: Using the web to discover 
comparable cases for news stories. Proceedings of the Sixteenth International World Wide Web 
Conference (pp. 541-551). Banff, AB. 

Macleod, C., Grisham, R., & Meyers, A. (1998). COMLEX syntax reference manual, Version 3.0.  

McLure, M., & Forbus, K. (2012). Encoding strategies for learning geographical concepts via 

analogy. Proceedings of the Twenty-Sixth International Workshop on Qualitative Reasoning. 
Los Angeles, CA. 

Mostek, T., Forbus, K. D., & Meverden, C. (2000). Dynamic case creation and expansion for 
analogical reasoning. Proceedings of the Seventeenth National Conference on Artificial 
Intelligence (pp. 323-329). Austin, TX: AAAI Press. 

Peterson, J., Mahesh, K., & Goel, A. (1994). Situating natural language understanding within 

experience-based design. International journal of human-computer studies, 41(6), 881-913. 

Schank, R., & Cleary, C. (1994). Engines for Education. Erlbaum. 

Tomai, E., & Forbus, K. (2009). EA NLU: Practical language understanding for cognitive 
modeling. Proceedings of the Twenty-First International Florida Artificial Intelligence 
Research Society Conference (pp. 117-122). Sanibel Island, FL: AAAI Press. 

Van Durme, B., & Schubert, L. (2008). Open knowledge extraction through compositional 

language processing.  Symposium on Semantics in Systems for Text Processing (pp. 239-254). 
Stroudsburg, PA: Association for Computational Linguistics. 

West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., & Lin, D. (2014). Knowledge base 
completion via search-based question answering. Proceedings of the 23rd international 
conference on World wide web (pp. 515-526). International World Wide Web Conferences 
Steering Committee. 

Yan, J., Forbus, K., & Gentner, D. (2003). A theory of rerepresentation in analogical matching.  
Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society (pp. 
1265-1270). Mahwah, NJ: Lawrence Erlbaum. 

 




