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Abstract

This paper describes R3 (Reading, Reasoning, and Reporting), our system for deep language understanding
and extension of a mechanistic model for biochemical signaling pathways. The overall purpose of R3 is to
read and incorporate into its model information about signaling pathways from PubMed Central journal arti-
cles. Its initial background model of these biochemical pathways is derived from an imported curated model
of biological events, complexes, and proteins (reactome.org). We describe some significant issues for deep
semantic parsing in this domain and how we use pre- and post-analysis reasoning to bridge the differences
between the semantic information that can be derived from a text and the codified mechanistic information in
the curated biomedical database. We also present extensions to relational structure-mapping to detect corrob-
oration between the semantic parse and the model and extend the model with analogical inferences from the
parse. We close with a description of empirical results with R3, including semantic parsing, model extension,
grounding entity and event references, and modeling entity behavior using knowledge learned by reading.

1. Introduction

Machine reading does not end with a parse or even with a semantic interpretation of text. When we read to
inform ourselves, we use our current model of the world to guide our interpretation of the text, and then we
reconcile this interpretation with our model to determine consistency with our prior beliefs and perhaps to
accept and incorporate the new information. Our interpretation might corroborate, extend, or conflict with
our prior model and perhaps cause us to revise or extend it. We refer to this model-centric activity as reading
with a model. Reading with a model is the central goal of our ongoing work on the Reading, Reasoning, and
Reporting (R3) cognitive system, as part of DARPA’s Big Mechanism program (Cohen, 2015).! R3 reads
articles in molecular biology to extend and revise its models of biological mechanisms, specifically those
having to do with signaling pathways.

A central capability— and research challenge— for cognitive systems that read with a model is localizing
(i.e., recognizing and retrieving) entities and events mentioned in the text when they appear in the prior model,
in order to begin the process of reconciliation. Localization allows the system to establish a mapping between
the interpreted text and the model to enable bidirectional information flow between the model and the text
interpretation process. That is, we seek to transfer information about mechanisms gleaned from the text into
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the model (interpretation-to-model), either to extend the model or to identify and annotate conflicts. If
localization first establishes correspondence between parts of the model and the text, we can also improve the
text interpretation process (model-to-interpretation) by making the reading system aware of details about
known entities and processes (such as their types and relations to other mentioned entities) so that when they
are mentioned only by reference, those references are not overly vague or ambiguous. If known entities and
events in the text are not localized correctly within the model, then the interpretation is less successful since
new related information is not properly integrated.

Building a system that reads and localizes to a pre-existing biological pathway model has been developed
and curated by domain experts involves many domain-general and domain-specific challenges, among them:

o Texts frequently use the same word to mean different types of objects in the model (e.g., “RAS”) can
refer to a protein, a gene, or a larger multi-protein complex, within a single article.

e Texts may describe things at different levels of abstraction than the model. For example, authors
frequently talk about the the function of events while a purely mechanistic model may only describe
the biochemical reactions taking place.

e One process or event may be part of many other processes or events in the domain model.

Our initial attempts at localization consisted of parsing articles and attempting to directly match semantic
descriptions to known events and entities in a pathway model extracted from the Reactome (reactome.org)
portion of Pathway Commons, a large network of reactions represented using a small OWL ontology. We
ran into all of these issues in the process. There were several key kinds of mismatches between the semantic
representations from parsed texts and the chemical reaction ontology (BioPAX) of the model. Some of these
differences had to do with the explicit terms for kinds of reactions/reaction products.

A commonly mentioned class of named reactions are the post-translational modifications, including phos-
phorylation (binding a phosphoryl group to a molecule). Another is the formation of complexes with multi-
ples of the same molecule. Dimerization is the binding of two like molecules to form a dimer. These sorts
of named events were present in the model but only by implication. In the formally represented BioPAX
model one has to compare the reactants and products to detect these types of events. For structure mapping
to be effective, inferences explicitly identifying these reaction types are needed to make the mapping process
effective. We discuss those inferences required for localization in Section 3.1.

It also became clear that articles often talk about processes at a functional level, in terms of triggers for
and preventers of events or event sequences. Typically, in the signaling domain, processes are “switched”
on or off, and proteins can “activate” or “inhibit” processes. Proteins are described as in an “activated” state
when they are bound to other molecules in ways that enable them to act as catalysts in subsequent reactions.

This kind of association of functional states with molecules is so common that, in many cases, localization
by matching is not effective unless the underlying model represents these molecular states explicitly. What
makes a protein is “active” can be many different things at the structural, molecular level. For example,
proteins like MEK and ERK are activated when they are phosphorylated. Others are deactivated when they
are phosphorylated. Some are activated when they are dimerized, etc.

To capture the specific states of activation for the particular proteins in our model, we needed a source of
information about the complexes involving those proteins when they were considered “active” or “inactive”.
We found our source by parsing the textual summary statements associated with each reaction in the model
by the original curators. For example:

e “SOSI1 is the guanine nucleotide exchange factor (GEF) for RAS. SOS1 activates RAS nucleotide
exchange from the inactive form (bound to GDP) fo an active form (bound to GTP).”

e “EGFR phosphorylates PLC-gammal, thus activating it.”

o “Activated MAPK proteins negatively regulate MAP2K1:MAP2K2 heterodimers...”



These examples of reaction summaries show how the language used for human consumption conveys
the functional states of their primary participants, rather than their chemical changes. R3 learns what it
needs for localization by structure mapping comparisons of those descriptions against the associated model
of the chemical reactions. When subsequent texts also describe functional states, we can now identify the
corresponding states in our model.

R3 integrates deep semantic parsing, ontology mapping, interpretation-to-model structure-mapping, and
functional reasoning. Deep parsing (Section 3.2) allows R3 to extract precise semantics and determine entity
types from local lexical context. R3’s ontology mapping (Section 3.3) allows it to transfer its semantic
interpretation into other ontologies to identify any and all corroborating events and entities. R3 extends
structure-mapping methods (Section 3.4) to support wide-scale event recognition and retrieval. Finally, R3’s
mechanism-level reasoning (Section 3.7) allows it to reason about functional factors— such as what it means
when an article describes an entity as active— despite lacking direct functional knowledge in its ontologies.

Section 2 outlines the problem of extracting and recognizing biological events and interactions from text,
focusing on challenges for natural language understanding. Section 3 describes the R3 approach to meeting
these challenges. Section 4 describes empirical evidence of our claims that (1) R3 efficiently and robustly
processes large bodies of text, (2) R3’s learning-by-reading improves its precision and recall of subsequent
learning-by-reading, and (3) R3 can use information learned by reading to answer new types of queries that
were not supported by its initial model. We close with a discussion of future work for R3.

2. Machine Reading in the Biology Domain

Biomedical research articles are written to be read by other professional biologists who are presumed to have
the requisite technical background. The brief mention of a well-known mechanism (“RAS/RAF/MEK/ERK
Pathway”) is sufficient to evoke all of the details of the mechanism in the mind of the reader. This lets them
effortlessly fill in information gaps that cannot be supplied by standard discourse techniques (“activated upon
GTP loading and deactivated upon hydrolysis of GTP to GDP” — loaded onto or hydrolyzed from what?).
We need to have knowledge sources that enable our systems to do this too.

Like other authors, biologists are under pressure to keep their articles within length limits. This leads to
frequent use of compaction techniques such as describing events using nominalized verbs and packing in-
formation into them as prenominal modifiers, e.g., “EGFR and ERBB3 tyrosine phosphorylation,” “mitogen-
induced signal transduction.” This changes the usual grammatical cues (such as one would use on newswire
text) and requires knowledge-rich analysis techniques if parses are to be accurate.

A further property of biomedical text is that logically related information is usually distributed across
multiple sentences. The following example is typical. The classification of the sites are given in the first
sentence and their identity in the second. “We observed two conserved putative MAPK phosphorylation sites
in ASPP1 and ASPP2. The ASPPI sites are at residues 671 and 746, and the ASPP?2 sites are at residues 698
and 827.” In R3 we have enhanced our discourse history to let us combine information from both sentences
into a single, logically complete, representation that specifies the binding sites on ASPP1 and ASPP2 where
MAPK catalyzes phosphorylation.

3. Approach

Here we describe R3’s architecture and information flow. We use Figure 1 to guide our discussion, stepping
through the information flow chronologically. We begin by describing the setup and operation of the domain
model and the semantic parser, and then we discuss the post-parse reasoning mechanisms and operations on
the domain model.
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Figure 1. The R3 architecture, and the flow of information by which R3 reads articles, updates its mechanism models,
and publishes extracted knowledge for human and machine collaborators.

3.1 Bootstrapping the Domain Model and the Parser

Before reading articles, R3 initializes its parser with domain vocabulary and grammar and uses inference rules
to optimize and index its domain model. R3 uses the UniProt knowledge base citepuniprot2008universal as
a source of protein synonyms to enhance protein recognition during parsing. It maps each protein synonym
to a unique identifier to enable cross-indexing in various biological ontologies.

R3 imports OWL domain models specified in Biological Pathway Exchange (BioPAX) (Demir et al.,
2010). BioPAX specifies structural information about biochemical reactions (e.g., bindings, phosphoryla-
tions, and other interactions), complexes, proteins, catalysis, and reaction regulation. R3 uses domain-specific
inference rules to extend the BioPAX domain model with additional structure to explicitly represent causal
relations, transport events, post-translational modifications (e.g., phosphorylation), functional information
(activation, deactivation), and some key structural molecular categories (e.g., homodimer, heterodimer) that
are frequently referred to in text. Much of the enhanced content is implicitly described in BioPAX (e.g., a
homodimer is identifiable as a complex with two instances of the same protein), but R3 detects and explicitly
represents this sort of additional structure to facilitate its search and localization during reading.

Finally, R3 uses a graph grammar to segment and index the enhanced BioPAX model into logical contexts.
The grammar is equivalent to regular expressions over relational knowledge to describe how to traverse the
model and segment it into indexable parts, e.g., by starting with biochemical-reaction entities and
traversing left and right relations to the reactions’ input and output molecules, respectively, and then
descending recursively through sub-molecular structures via compound relations, etc. This performs a
regex-like match on the graph to identify matching subgraphs, and then indexes each subgraph into its own
logical context. This quickly indexes the enhanced BioPAX model into smaller contexts so that R3 can
quickly search the model to localize the information it reads, as we describe in Section 3.5.



3.2 Deep Semantic Parsing

The purpose of language analysis in R3 is to identify and represent the semantic content of biomedical texts to
facilitate extension of a domain model and to provide a standard view of an article’s content for downstream
reasoners (e.g., Danos et al., 2009). This requires normalizing all of the syntactic and lexical variation in how
a relation is expressed to a single canonical form. References to entities and relations are also aligned with
articles’ document structure to facilitate search and context driven inferences. Ultimately, we seek to utilize
the additional specificity of content localized from introductory remarks in papers to help the interpretation
process, though this remains a goal for the future.

To do this, R3 uses the SPARSER natural language analysis platform to read the texts. SPARSER is a rule-
based, type-driven semantic parser. Rules succeed only if the types of the constituents to be composed satisfy
the type constraints (value restrictions) specified by the rule. SPARSER is also model driven. As described in
McDonald (1996), writing a semantic grammar starts with a semantic model of the information to be analyzed
along with a specification of all the ways each of the concepts can be realized in the language of the genre
(e.g., biomedical research articles). A compiler takes the model and creates a semantic grammar from the
realization specifications by drawing on a schematic standard English syntactic grammar. This ensures that
every rule in the generated grammar has an interpretation, and thus everything SPARSER is able to model it
can also parse.

We use SPARSER as the parser within R3 in part due to its ability to parse into a referential model, instead
of solely parsing to logical forms. SPARSER’s semantic interpretations are represented in a typed lambda
calculus (McDonald, 2000). The categories (predicates) are taken from an ontology whose upper structure
uses Pustejovsky’s model of events (Pustejovsky, 1991). There is a middle level with ontological models for
location, time, people, measurement, change in amount, and more. This core is extended with a ontology
of biomedical phenomena that is deliberately designed to be close to how these phenomena are described in
articles in order to simplify the parsing process.

Individuals (i.e., instances of categories) represent the entities, events, and relationships that are identified
when a text is read. Individuals are unique: the parsing process guarantees that every individual with a
particular set of values for its properties is represented by a single object (Maida & Shapiro, 1982, McDonald,
2000). This guarantee is managed by a description lattice that tracks the addition of properties (i.e., binding
of role variables). Every {property-assignment, category) instance is represented by a unique individual that
is maintained and updated incrementally as a text is read.

Categories act as frames in a conventional knowledge representation, with a specialization lattice that
permits the inheritance of realization options as well as variables (possible relations) and methods for type-
specific reasoning. They are also where we state facts about normally expected properties. For example,
phosphorylation events entail an active protein or other agent, a substrate protein that is phosphorylated, and
a site (residue) where the phosphate is added. A residue is identified by its amino acid and its location on a
particular protein. If we read about the sites of a phosphorylation and the requisite information is not supplied
locally in the text, then we can assume that it is very likely to have been supplied elsewhere in the article,
which motivates a search to identify it.

Our discourse component resolves pronominal and definite references using a structured history of entity
and event mentions. This same facility organizes searches to expand partial descriptions of entities into full
ones (frame completion) and in general to link individuals as they appear in different parts of an article.
Consider this text. It compares what happens when a particular drug is or is not used:

“In untreated cells, EGFR is phosphorylated at T669 by MEK/ERK, which inhibits activation of EGFR
and ERBB3. In the presence of AZD6244, ERK is inhibited and T669 phosphorylation is blocked, increasing
EGFR and ERBBS3 tyrosine phosphorylation and up-regulating downstream signaling.”

There are two mentions of the phosphorylation of residue T669 in this text, one in each sentence. The
mention in the second sentence (“T669 phosphorylation”) is marked by the sentence post-processor as being



incomplete because it does not specify the agent or the substrate. This combination of event-type and site is a
unique individual stored in the description lattice. The discourse history records that this individual was also
mentioned in the first sentence. This is enough to license R3 to trace up the structure on the first mention to
identify the other properties it has, and to copy over any non-conflicting properties of the first to the second.?

3.3 Ontology Mapping

After producing a deep semantic parse with SPARSER, R3 must localize and learn from the recognized events
and entities. This requires representing these events and entities using the ontology of the target domain
models, which are presently described in BioPAX. Since SPARSER’s interpretation is not BioPAX, R3 must
perform ontology mapping to re-represent SPARSER’s output using the R3 ontology.

R3 performs ontology-mapping using manually-created forward-chaining rules in its internal SPIRE rea-
soner (show in Figure 1, center). It runs these rules exhaustively, binding each rule’s left-hand side to re-
lational knowledge in the SPARSER interpretation, and asserting the corresponding right-hand side in the
ontology of the domain model.?> Since the article and the model may represent events at different granular-
ity, the SPIRE ontology-mapping rules must occasionally generate new symbols to represent the mismatch
in levels of description of entities and processes. For example, if R3 reads, “X phosphorylates Y and Z,” it
must create two separate phosphorylation events for Y and Z, with X as the agent role for both, in order to
localize them independently: these may or may not correspond to the same event in the model.

3.4 Enhanced Structure-Mapping

R3 uses SPIRE’s structure-mapping— constrained graph-matching over relational representations based on
Gentner’s (1983) psychological theory of analogy and similarity— for two central operations in model local-
ization:

1. Retrieval: Given a probe description extracted from text, recognize and retrieve all potentially corre-
sponding entities and events from the model.

2. Transfer: Given a semantic description extracted from text and a description of an entity or event from
the model, match the two descriptions and suggest the transfer of entities and relations into the model.

Using structure-mapping for machine reading is not a new idea; for instance, Learning Reader (Forbus
et al., 2007) uses structure-mapping for offline rumination. By contrast, R3 utilizes structure-mapping for
online localization (i.e., retrieval of model components) and transfer to extend the model.

The core structure-mapping operation involves computing one or more mappings between two representa-
tions. Each mapping is a maximal common subgraph (MCS) solution between the two representations, where
each entity is a node, each relational assertion is a node, and each relation argument is a position-labeled edge.
Following Falkenhainer et al.’s (1989) computational model, each of SPIRE’s MCS mappings describe cor-
respondences (i.e., tuples describing isomorphic nodes across graphs), a score that rates the quality of the
correspondences, and inferences describing complements of the MCS (i.e., non-isomorphic relations and en-
tities) that can be projected from one graph to the other. Structure-mapping inferences are not necessarily
deductively sound, since they are based solely on structural similarity; however, in previous work, we have
shown that these inferences can be practically used to revise beliefs and models (Burstein, 1988, Friedman
etal., 2012). As we illustrate below, structure-mapping inferences are practical for extending the model while
reading. Structure-mapping reduces the space of legal mappings— thus making the problem more tractable
than traditional MCS optimization problem— by adding two additional constraints to the MCS problem:

2. The two eventualities differ in their existential status. The tense in the first sentence indicates that the phosphorylation occurs. In
the second we are told that it is blocked.

3. SPIRE caches LHS clauses and definite (Horn) clause components, and it presently runs ontology-mapping at the sentence-level on
SPARSER’s output, so ontology-mapping is a rapid operation.



o Tiered identicality: Category nodes can only correspond to other category nodes with identical cate-
gories, and relation nodes can only correspond to relation nodes with identical predicates. Structure-
mapping allows symbol arguments (e.g., referring to entities or events) to correspond to non-identical
symbols.

o Parallel connectivity: If two relation or category nodes correspond, their arguments must correspond,
in sequence. Applied globally: if two nodes correspond, so must their reachable subgraphs.

These two constraints drastically decrease the solution space, so SPIRE’s greedy MCS algorithm is plau-
sible and effective. Guaranteeing an optimal MCS solution is out of scope for R3 due to tractability: the
decision problem for MCS is widely known to be NP-complete. As we demonstrate below, a greedy algo-
rithm produces practical results for R3’s model localization.

3.4.1 Structure-Mapping for Recognition

Computational models of structure-mapping have been used widely to compute analogies across domains,
identify structural similarities, and transfer knowledge. However, event recognition and localization require
much tighter matching: R3 should not retrieve events that are similar to an event described in a scientific
article, and R3 should retrieve descriptions that could refer to the same events. We call this structure-mapping
setting recognition rather than the more traditional setting of analogy.

While recognition differs from analogy in crucial ways that we mention below, structure-mapping still of-
fers important benefits for flexible localization from reading. Specifically, structure-mapping supports partial
matches: if the article mentions something not in the model (e.g., a new reactant within a known reaction),
structure-mapping will identify relevant candidates for model expansion.

Typically, texts will talk about specific proteins playing roles in various reactions or causal processes when
in fact, and in the underlying model, these proteins are in various states of binding with other, unmentioned
molecules in complexes. Hence, it is critical that the structure matching be able to identify these proteins
within these larger complex structures as either reactants, products or catalysts when relating the extracted
text semantics to the model.

Adapting structure-mapping to the recognition setting included the extensions that we outline below.

Identifier intersection. Like any graph-matching optimization algorithm, if structure-mapping can add a
correspondence to its mapping, it will. This maximality bias yields higher-scoring mappings, but it can
also produce erroneous results in an entity- or event-recognition setting. For instance, without additional
constraints, the event “SOSI activates RAS” will map nearly perfectly to the event “MEK activates ERK”;
however, this is undesirable for coreference and recognition.

In its recognition setting, R3 computes a priori correspondence allowances, e.g., so that a parsed indi-
vidual can only correspond to a model individual if their identifiers (e.g., list of name strings) intersect. This
allows the parsed individual with namestrings {“SOS1,” “SOS1_-HUMAN,” “SOS-1"} to correspond to the
model entity with namestrings {“UniProt:Q07889 SOS1,” “SOS1,” “Son of sevenless protein homolog 17}
due to the “SOS1” intersection. This significantly increases recognition accuracy and reduces the search
space for mappings.

Dependency constraints. Adding constraints on entities during mapping— such as only permitting two
phosphorylation events to match if the phosphorylated entities also match— reduces erroneous mappings.
The descriptions “phosphorylated ERK” and “phosphorylated RAF” describe the same property (i.e., phos-
phorylation modifications) but with non-intersecting object-roles. The phosphorylation properties are there-
fore incompatible for recognition purposes. We use a domain-general mechanism for specifying and mapping
with dependencies, but R3 uses domain-specific rules for asserting these dependencies, e.g., properties de-
pend on their object role-filler. During the mapping process, when the ob ject role-filler is selected for
the mapping, the events are added to the search space.



Category and predicate subsumption. If R3 reads, “SOS/ activates RAS nucleotide exchange”, it will
assert (activates—-process txt-SOSl-ent txt-RAS-NE-ent) to describe this relationship be-
tween the SOS1 referent txt-S0S1-ent and the nucleotide exchange referent txt-RAS-NE-ent.*
However, in the corresponding reaction in the model, R3 has described this relationship with greater speci-
ficity, e.g., (catalyzes—-process—as—component mdl-SOSl-ent mdl-RAS-NE-ent), since SOS1
is a subcomponent of the catalyzing complex.

In R3’s relational hierarchy, the activates—-process relation from the text is a superordinate rela-
tion of the catalyzes-process—as-component relation in the model. SPIRE’s structure-mapping
algorithm supports nonidentical relation matches and nonidentical category matches albeit at a diminished
score, based on the Jaccard index of their superordinate locales, which we define as the set of superordinate
predicates or relations reachable in an upward walk of constant length k. The Jaccard index between locales

is computed as }Eﬁgg;} ,s0itis 0.0 (i.e., not allowed) for nonintersecting locales, 1.0 for identical locales (i.e.,

identical predicates or categories), and within the interval (0, 1) for nonidentical predicates with intersecting
locales. For R3, we use a locale distance of k¥ = 3, including the relation or category itself and all relations or
categories within two upward traversals. The k value is sensitive to the depth and specificity of the ontology.

Other analogy systems (e.g., Falkenhainer, 1988) match nonidentical predicates and categories as a post-
process. This differs from SPIRE’s inclusion of nonidentical predicate matches in the initial search for corre-
spondences.

3.5 Retrieval and Localization

After mapping the extracted information, e.g., a description of an entity or process— into BioPAX, R3 local-
izes it by retrieving all matching entities and processes in the model. R3 uses a two-stage similarity-based
retrieval algorithm, similar to MAC/FAC (Forbus et al., 1995): given a probe (i.e., the process or entity
description) and a library (i.e., a set of entity and process descriptions from the model), the first stage is an ef-
ficient feature vector dot-product between the probe and each context to filter low-similarity descriptions, and
the second stage is the structure-mapping recognition algorithm described above. The result is a similarity-
ranked list of a subset of the model library. R3 uses a priori structure-mapping constraints to ensure that
the explicitly-described entities and relations are in the mapping (e.g., for “MEK-directed phosphorylation
of ERK,” the MEK, ERK, and phosphorylation event are all required); otherwise, the mapping operation
terminates with a score of zero. R3 thereby identifies and ranks portions of the domain model according to
their structural similarity to the extracted knowledge. As we show in Section 4, this localization approach
recognizes entities and processes with high precision and recall; however, it does not account for context and
causal locality, which we revisit in our discussion of future work in Section 5.

3.6 Updating the Model

After R3 interprets text (Section 3.2), maps it into BioPAX (Section 3.3), and identifies relevant portion(s)
of the model (Section 3.5), it updates the model with the interpretation. The update operation is based on
structure-mapping inferences (outlined in Section 3.4).

An example structure-mapping inference operation is displayed graphically in Figure 2, which illustrates
the relationship between the semantic interpretation, the model, their isomorphic subgraph, and the inferred
(i.e., transferred) subgraph. The semantic representation from the text (Figure 2a) and the corresponding
portion of the BioPAX model (Figure 2b) are the inputs to structure-mapping, which computes the maximal
common subgraph (shown in blue in Figure 2c, using the symbol names from the model). The complement
(i.e., non-isomorphic portion) of the semantic interpretation provide structure-mapping inferences (shown in
red in Figure 2¢) that R3 transfers into the model.

4. The symbols are renamed here for clarity.
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Figure 2. After parsing text, R3 maps the semantic parse into the model ontology (a, above) and uses the retrieved portion
of the model (b, above) to compute a mapping (c, above). R3 uses corroborating, isomorphic structure (c, blue) as a
scaffold to transfer the complement semantic structure from the parse (c, red) directly into the model to extend it.

Content-wise, the interpretation in Figure 2 corresponds to the following text:

“SOS1 activates RAS nucleotide exchange from the inactive form (bound to GDP) to an active
form (bound to GTP).”

The interpretation includes the following statements (and others) about a nucleotide exchange and a RAS
protein:

(isa indiv-6822 nucleotide-exchange)
(input-complex indiv-6822 indiv-6822-in-complex)
(output-complex indiv-6822 indiv-6822-out-complex)
(name indiv-6690 "RAS")

Structure-mapping computes that the nucleotide exchange event parsed from the text is isomorphic to a
known nucleotide exchange event in the model. Also, the protein, input, and output complexes of this event
in the text are isomorphic to the respective protein, input, and output complexes of the event in the model.
However, the semantic interpretation also contains novel (i.e., non-isomorphic) information that the RAS is
inactive in the input complex of the nucleotide exchange and is active in the output complex:

(isa indiv-6815 inactive-status)

(function-object indiv-6815 indiv-6690)
(within-complex indiv-6815 indiv-6822-in-complex)
(isa indiv-6917 active-status)

(function-object indiv-6817 indiv-6690)
(within-complex indiv-6817 indiv-6822-out-complex)

The isomorphic structure (shown in blue in Figure 2¢) provides a scaffold to transfer this novel informa-
tion (shown in red in Figure 2c) into the model, importing new categories and relations describing existing
entities and events in the model, and generating new symbols for novel events and entities.



For our evaluation described in Section 4, R3 only transfers inferences that describe protein function and
behavior, such as active and inactive forms of proteins, and processes that activate and deactivate proteins. In
the case of Figure 2, R3 learned that p21 RAS is active when bound to GTP and inactive when it is bound to
GDP.

3.7 Mechanism-Level Reasoning and Propagation

After transferring the inferences into its model as described in the previous section, R3 propagates information
throughout the model and makes secondary inferences. At present, R3 only propagates information about
protein function and activation, but we are expanding the scope of propagation our ongoing work. When R3
learns that a protein instance is active or inactive, it revises all relevant reactions and super-complexes in the
model, detecting changes in active status across reactions and labeling all activation or deactivation processes
in the pathway. Updating the model with one fact can cause widespread revision of complexes and reactions
in the model.

These updates to the model change the relational structure of the entities and reactions that R3 uses for
localization, as described in Section 3.5. In Section 4, we show how R3’s model extensions increase its
precision when localizing subsequent interpretations from text. In this fashion, learning by reading improves
R3’s subsequent learning by reading.

4. Experiments
4.1 Evaluating Breadth & Efficiency of Information Extraction

We evaluated R3’s semantic parser and its ability to extract information, filter irrelevant information (i.e.,
entities or events not in the domain model) and merge duplicate information against nearly 1,000 biology
articles from PubMed Central. This supports our claim that R3 can efficiently and robustly perform deep
semantic analysis.

We configured R3 to extract information about post-translational modifications such as phosphoryla-
tion and ubiquitination reactions, as well as positive and negative regulations of processes, and increases or
decreases in molecule concentrations. Other information— including binding events, indirect causal rela-
tions, translocation events, transcription events, and more— were parsed but not analyzed with respect to
the domain model in this first experiment. Additionally, R3 used epistemic filtering to ignore historical,
hypothetical, or negated statements, in order to focus on positive information.

R3 read all of the articles in approximately 20 minutes. In total, it extracted 15,876 semantic descriptions
of the targeted data, across all sections of all papers. This includes entities and events that were unrelated to
the model, as well as duplicate data, since multiple sentences often refer to the same event.

R3 discarded 619 event descriptions that were only mentioned in the introduction or methods sections,
since this experiment was focused on the new contributions of articles, and not the exposition or methodology.
R3 then analyzed each extracted datum for model relevance, e.g., whether the proteins of a reaction were
described in the domain model. R3 filtered out 8,864 irrelevant data, leaving 6,384. Finally, R3 merged these
entities and events— and the parsed text that served as evidence— into 2,351 model-relevant data.

This test demonstrated the robustness and efficiency of R3’s parsing operations. Unfortunately, since we
do not have a human expert’s gold standard to judge precision and recall for R3 on these 1,000 documents,
this experiment does not provide evidence of R3’s accuracy. That is the purpose of the next two experiments.

Here we summarize three evaluations: an information extraction evaluation (Section 4.1); a localization
evaluation (Section 4.2); and a demonstration of R3 using the knowledge it learned by reading to explicate
protein function and behavior (Section 4.3).
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Figure 3. A graph of R3’s domain model (the EGFR signaling subset of Reactome), including 911 molecule nodes and
128 biochemical reaction nodes. Each node is itself a description of the corresponding event or entity, containing an
average of 110 assertions per description.

4.2 Evaluating Localization

In this experiment, we demonstrate that R3 can learn functional knowledge by reading, and that this knowl-
edge improves R3’s subsequent ability to localize extracted knowledge as it reads.

For this experiment, we used the entire “Signaling by EGFR” subset of the open-source, peer-curated
Reactome pathway database.> Reactome pathway models describe reactions, reactants (i.e., complexes, pro-
teins, and other molecules), catalysis and regulation relations, and protein modifications (e.g., phosphoryla-
tion, ubiquitination). The “Signaling by EGFR” Reactome subset contains 128 biochemical reactions and
911 molecules (i.e., proteins, complexes, small molecules, and other physical objects).

R3 parsed summaries (i.e., multi-sentence descriptions) and display-names (i.e., labels) of reactions that
refer to molecules as “active,” “inactive,” “stimulated,” or “activated,” or alternatively that refer to “activa-
tion” or “activating” a protein. These mentions of protein activity describe functional knowledge, which the
BioPAX model does not represent natively. Since the summaries and display-names are related directly to a
corresponding reaction in the model, there is no need for R3’s localization step; R3 simply maps the parser’s
semantic interpretation directly against the reaction in the model, and updates the model as described in Sec-
tion 3.6 and Section 3.7. R3 thus reads textual passages embedded within its model to extend the model itself.
We refer to this automatic process as bootstrapping the system with functional knowledge.

Figure 3 shows R3’s bootstrapped domain model after it learns by reading summaries and display-names,
where each node in the graph is a separate description of a reaction or reactant, with an average of 110
assertions each. The green nodes in R3 are portions of the model (i.e., reactions and molecules) that changed
as a result of bootstrapping: reading the display-names and summaries and then propagating the information.

To qualify the effect of R3’s bootstrapping on its ability to localize extracted information, we ran R3’s
localization operations on an article and compared the f-measure before and after. In this article, R3 extracted
six mentions of biochemical processes that had correspondences in the domain model: three activations of
ERK, one activation of MEK, one MEK-ERK association, and one MEK-directed phosphorylation of ERK.
Before its functional knowledge from bootstrapping, R3 could not localize these activation mentions, but it
properly localized the rest, so it scored an average F-measure of 0.33. After bootstrapping, R3 scored an

5. The BioPAX OWL files are downloadable via the pathway browser: http://www.reactome.org/PathwayBrowser/
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Figure 4. R3-generated graph that explains the activity (i.e., function) of Mitogen-activated protein kinase (MAPK), in-
cluding the reactions that activate it and its downstream events when active.

average 0.94 (the imperfection was due to retrieving one erroneous event when localizing MAPK activation).
Similarly, for localizing eight distinct molecules mentioned by the article, two of which were described as
“active,” R3 scored an average F1 of 0.75 without bootstrapping and 1.0 with bootstrapping.

This provides preliminary evidence that R3’s learning-by-reading process of bootstrapping improves its
ability to localize extracted knowledge during subsequent reading.

4.3 Demonstrating Learned Knowledge

In addition to using its learned knowledge to improve model localization, R3 can display the functional
knowledge that it learned by reading. This supports the claim that after reading, R3 can answer new types of
queries that were unanswerable with the initial model. Figure 4 shows a graph generated by R3 to describe
the function— including activation, deactivation, and event behavior— of the MAPK protein. Before reading,
R3 had no concept of “active” or “inactive” RAS/RAF/MAP2K/MAPK. After reading, R3 is able to describe
the event structure of MAPK— relative to activating components RAS, RAF, and MAP2K, and including its
translocation to the nucleus— which is an accurate representation of MAPK function in EGFR signaling.

In Figure 4, “R” nodes are reactions in the model, arrows from molecules to reactions indicate that
the molecule is a left-hand-side (i.e., input) reactant, arrows from reactions to molecules indicate that the
molecule is a right-hand-side (i.e., output) reactant, dotted arrowheads indicate that the molecule is a direct
catalyst of the reaction, and tee arrowheads indicate that the molecule negatively inhibits of the reaction in a
regulatory role.

This demonstrates that the information R3 learned by reading allows it to accurately reason about protein
function, which is was not possible with the initial domain model R3 was given.

5. Conclusion & Future Work

We described the R3 system for reading with a model, including relevant advances in semantic parsing and
structure-mapping to accurately extract information and localize it within a large third-party domain model.
We described a coarse evaluation of R3’s parsing capabilities, an analysis of its model localization, and we
showed that R3’s uses information it reads to explain protein function within a signaling pathway.

R3 presently uses semantic similarity to localize events in the model, but this is not always sufficient:
context is an important consideration. Consider the sentence “SOS and Grb2 promote the formation of GTP-
bound p21 Ras.” Without more information, this will perfectly match at least 13 distinct biochemical reaction
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entries in some massive BioPAX models. Distinguishing which of these perfect matches the article refers
to— and it could be more than one— requires using context of the surrounding text. We are implementing a
measure of causal relevance, so R3 can use previous, high-confidence localization operations to rank these
candidates based on their proximity in the causal model. This assumes that biology articles describe causally-
related events and entities rather than unrelated events and entities, which holds true in our experience.

Also, R3 presently only extends the model with new information, but learning by reading also involves
detecting and reconciling conflicts. Important near-term future work on R3 will enable it to automatically
identify possible conflicts in these extensions and then pose possible resolutions to these conflicts.
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