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Abstract 
Informal language, such as spoken dialog, is full of utterances that fail to conform to neat notions 
of grammaticality. Presumably, people understand irregular inputs by approximately aligning them 
with their lexical, syntactic, semantic, ontological, and context-based expectations. If intelligent 
agents are to function with the linguistic dexterity of people, they must be supplied not only with 
canonical expectations about grammar, lexicon and the world, but also (a) reasoning capabilities 
that can derive meaning even when those expectations are incompletely fulfilled, (b) the ability to 
evaluate their confidence in their interpretations of all inputs, and (c) the ability to determine 
whether their current level of analysis is actionable or whether additional resources should be 
expended in pursuit of a more confident analysis. This paper describes how we are enabling 
language-endowed intelligent agents (LEIAs) to recover from so-called “unexpected inputs” during 
incremental, deep-semantic analysis. Our strategy: preparing LEIAs to expect the unexpected.   

1. Introduction 
Descriptions of language, as well as natural language processing (NLP) systems, tend to focus on 
canonical phenomena – i.e., “grammatical” sentences. Spontaneous natural language, by contrast, 
often bears little resemblance to idealized models, as illustrated by the following excerpt from the 
Santa Barbara corpus of spoken language. The speaker is a student of equine science talking 
about blacksmithing.  

 
we did a lot of stuff with the -- like we had the, um, ... the burners? you know, 
and you'd put the -- you'd have -- you started out with the straight .. iron? .. you 
know? and you'd stick it into the, .. into the, .. you know like, actual 
blacksmithing (DuBois et al. 2000-2005).1 

 
Outside of context, and unsupported by the intonation and pauses of spoken language, this 
excerpt requires a lot of effort to understand.2 Presumably, we get the gist by partially matching 

                                                
1 Some annotations have been removed for concise presentation.  
2 A reviewer remarked that we are making the task artificially more difficult by providing LEIAs with only a written 

transcript instead of the speech stream itself, since speech has prosodic features that assist people in extracting 
meaning. Indeed, prosodic features could be very useful to LEIAs; however, currently unmet is the precondition of 
automatically extracting and interpreting them within the agent’s ontological model. Developing such capabilities is 
necessary for human-level LEIAs – along with gesture recognition and interpretation, the simulation and 
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elements of input against the expectations in our mental grammar, lexicon, and ontology 
(remember, we told you this was about blacksmithing).  
 For language-endowed intelligent agents (LEIAs), unexpected input includes not only what 
people would consider non-canonical phenomena but also anything idiosyncratically not covered 
by the agent’s knowledge bases, language processing engines, or reasoning engines. For example, 
if the agent happens to not know what a grapefruit is, then it will have to resort to unexpected-
input processing for the seemingly canonical input I ate a grapefruit for breakfast. The results of 
its recovery are similar to what most people would conclude when faced with the input Paul ate 
some cupuacu for breakfast this morning: it must be some sort of food but it’s unclear exactly 
what kind. (It is a fruit that grows wild in the Amazon rainforest.)   

The main claims of this paper are: (1) LEIAs must be able to interpret input that is unexpected 
with respect to the current state of their knowledge and processors – called, hereafter, unexpected 
input; and (2) many types of unexpected-input processing are possible within the state of the art, 
as shown by our OntoSem2 system. The body of the paper describes some of the ways in which 
we are preparing LEIAs to interpret unexpected input. We focus on the following six phenomena: 
interpreting midstream fragments, preposition swapping, unexpected realization of an internal 
argument, extra elements of input, unknown words, and known words used in the wrong part of 
speech. We selected these not because they are inherently more important than other types of 
unexpected input (for a more comprehensive overview of unexpected input processing by LEIAs, 
see Nirenburg and McShane, 2016), but because we have new R&D results to report for them. 
Since this is a considerable list of phenomena, and since we have already described our general 
approach to cognitively-inspired natural language understanding (NLU) in many places 
(McShane and Nirenburg, 2012, 2015; McShane et al., 2005, 2008, 2016; Nirenburg and Raskin, 
2004), we will constrain the background section to the bare minimum and provide select details in 
the relevant subsections.   

2.  Language Understanding by OntoAgents 
We pursue deep-semantic natural language processing (NLP) within the agent architecture called 
OntoAgent (McShane and Nirenburg, 2012). Intelligent agents developed within this architecture 
have the typical cognitive capabilities of perception, reasoning and action. They can also 
optionally feature a dynamic physiological simulation, which is useful, for example, when they 
play the role of virtual patients in medical simulations (Nirenburg et al., 2008; McShane et al. 
2012, 2013a,b). We model language understanding as a channel of perception, following the 
theory of Ontological Semantics (Nirenburg and Raskin, 2004).  

The goal of OntoAgent text analysis is to automatically generate fully specified, disambiguated, 
ontologically-grounded text meaning representations (TMRs) from unconstrained natural 
language inputs. For example, the TMR for the input You need to apply pressure to the wound is 
as follows. (For reasons of space, we exclude the extensive metadata used by developers – e.g., 
which word of text is being analyzed, which lexical sense was used to generate each frame, 
inverse frames unless they include additional properties, etc.)   

 
 
                                                                                                                                            

interpretation of more channels of perception, and much more – but it will not be a near-term focus of our group’s 
research without collaboration with specialists in automatic speech recognition.   
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REQUEST-ACTION-1               PRESS-1 
 AGENT     HUMAN-1  ; the speaker       AGENT   HUMAN-2  ; the interlocutor 
 THEME     PRESS-1              THEME   WOUND-INJURY-1 

BENEFICIARY HUMAN-2 ; the interlocutor 
 

This TMR is headed by a numbered instance of the concept REQUEST-ACTION, which is the 
interpretation of “you need to”.3 The AGENT of this action is the HUMAN speaker and its THEME 
(what is requested) is an instance of PRESS. The PRESS event instance is further specified, in its 
own frame, as having the HUMAN interlocutor as its AGENT and an instance of WOUND-INJURY as 
its THEME. This instance of WOUND-INJURY will be coreferred with an earlier instance (explaining 
the article the) when the full context is analyzed. 

The concepts referred to in TMRs are not merely symbols in an upper-case semantics. They 
are grounded in a 9,000-concept, property-rich ontology developed to support semantically-
oriented NLP, script-based simulation, and overall agent reasoning (McShane and Nirenburg, 
2012). For example, PRESS is the child of APPLY-FORCE. Among its property-value pairs are case-
roles that support lexical disambiguation, including (AGENT  ANIMATE), (INSTRUMENT  LIMB, 
DEVICE), (THEME PHYSICAL-OBJECT).   

A prerequisite for automatically generating TMRs is our highly specified lexicon. Consider, for 
example, the first two verbal senses for address, shown in Table 1 using a simplified formalism. 
Syntactically, both senses expect a subject and a direct object in the active voice, filled by $var1 
and $var2, respectively.4 However, in address-v1, the meaning of the direct object (^$var2; ‘^’ 
indicates ‘the meaning of’) is constrained to a HUMAN or, less commonly, ANIMAL, whereas in 
address-v2 the meaning of the direct object is constrained to an ABSTRACT-OBJECT. The 
constraints appear in italics because they are virtually available – the analyzer accesses them from 
the ontology at runtime. This difference in constraints permits the analyzer to disambiguate: if the 
direct object is abstract, as in He addressed the problem, then address will be analyzed as 
CONSIDER; by contrast, if the direct object is human, as in He addressed the audience, then 
address will be analyzed as SPEECH-ACT.  
 

Table 1. Two verbal senses for the word address. The symbol ^ indicates “the meaning of”. 

address-v1 
  anno 
      definition  “to talk to” 
      example    “He addressed the crowd.” 
  syn-struc 
       subject      $var1 
       v               $var0 
       directobject $var2 
  sem-struc 
        SPEECH-ACT 
            AGENT   ^$var1 (sem HUMAN) 
            BENEFICIARY ^$var2 (sem HUMAN) (relaxable-to ANIMAL)                                       

address-v2 
  anno 
      definition  “to consider, think about” 
      example    “He addressed the problem.” 
  syn-struc 
       subject      $var1 
       v               $var0 
       directobject $var2     
   sem-struc 
       CONSIDER 
           AGENT     ^$var1 (sem HUMAN) 
           THEME    ^$var2 (sem ABSTRACT-OBJECT) 

 

                                                
3 The obligative modality indicated by need to is interpreted as a request for action when addressed to the interlocutor. 
4 Variables are written, by convention, as $var followed by a distinguishing number. Variables permit the language 

analyzer to map textual content from the input to elements of the syn-struc, and then link each syn-struc element with 
its semantic realization in the sem-struc. 
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These examples highlight several aspects of our lexicon. First, it supports the combined 
syntactic and semantic analysis of texts. Second, the metalanguage for describing meaning in the 
sem-strucs is the same one used in the ontology. Third, fixed and variable constructions of any 
complexity are readily supported (McShane et al., 2015). Finally, the sem-strucs—and, often, the 
associated syn-strucs—from the lexicon for one language can be ported into the lexicon of 
another language with minimal modification, which greatly enhances the multilingual 
applicability of the OntoAgent suite of resources (McShane et al., 2005). 

In this paper, we will not describe in detail the new implementation of Ontological Semantics 
that we call OntoSem2 (for a comparison with the previous engine, OntoSem, see McShane and 
Nirenburg, 2016). The key features of this implementation are: (1) it processes inputs 
incrementally, rather than as full sentences, which is psychologically more plausible and offers 
important practical advantages, such as allowing agents to begin acting on an input midstream; 
(2) it utilizes syntactic, semantic and reference heuristics jointly, rather than in a pipeline 
architecture; (3) it exploits select results of the Stanford CoreNLP toolset (Manning et al., 2014); 
and (4) it attempts not only basic semantic analysis – a difficult feat in and of itself – but also the 
analysis of many types of particularly difficult phenomena, such as ellipsis, broad referring 
expressions, and learning unknown words and concepts (McShane and Babkin, 2016a,b).  

3.  Recovering from Unexpected Input 
Our strategy for recovering from unexpected input is to anticipate and explicitly prepare for as 
many eventualities as possible, rendering them functionally almost expected. Each of the six 
subsections below discusses implemented methods for recovering from the types of unexpected 
input listed in the introduction. 

3.1  Interpreting Midstream Fragments  
It might seem surprising to consider the interpretation of midstream sentence fragments a type of 
unexpected input since analyzing fragments is the very definition of incremental parsing. 
However, treating fragments requires two types of processing not typical for NLP:  
 

(1) Reasoning over partial information: i.e., determining which candidate word senses and 
dependencies can confidently be excluded given the current state of input and which ones 
are still available. For example, English verbs do not normally take both a direct object 
and a clausal complement, so if one of them is confidently attested in a fragmentary 
input, then all verb senses requiring the other can be excluded.  

(2) Carrying ambiguity forward, which is avoided by many pipeline architectures to avoid 
the potential for exponential growth of candidate analyses stage after stage.  

 
Consider the incremental semantic analysis of the input Audrey killed the motor, presented with 
only select details for reasons of space. The first word of input is Audrey. The onomasticon 
contains only one sense of this string, so the nascent TMR is  
 
HUMAN-1 

GENDER        FEMALE 
HAS-PERSONAL-NAME   ‘Audrey’ 
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The next word is killed, so the combination Audrey killed is analyzed. The lexicon has 5 senses of 
kill, but only three of them permit a HUMAN to fill the subject slot: 1) ‘cause to die’: John killed 
the robber; 2) ‘cause to cease operating’: John killed the engine; and 3) ‘veto’: The committee 
killed the bill. The other two senses can be excluded outright since one requires the subject to be 
an event (The disease killed him) and the other requires it to be a non-human object that serves as 
an instrument (The bullet killed him).5  

The next word of input is the. The LEIA does not launch a new round of semantic analysis for 
the fragment Audrey killed the because no useful information can be gleaned from function words 
without their heads.  

The next and final stage of analysis is launched on the entire sentence Audrey killed the motor. 
Each of our three still-viable senses of kill includes semantic constraints on the direct object: for 
sense 1 it must be an ANIMAL, for sense 2, an ENGINE, and for sense 3, a BILL-LEGISLATIVE. Since 
‘motor’ maps to the concept ENGINE, sense 2 – ‘cause to cease to operate’ – is selected and the 
final TMR for Audrey killed the motor is as follows: 

 
ASPECT-1 

PHASE  END 
SCOPE  OPERATE-DEVICE-1 

OPERATE-DEVICE-1 
AGENT   HUMAN-1 
THEME   MOTOR-1 
TIME         < find-anchor-time6 

HUMAN-1 
GENDER  FEMALE 
HAS-NAME ‘Audrey’ 

 
We selected to illustrate incremental processing using the simplest of examples for purposes of 
clarity. In reality, most sentences involve much more midstream ambiguity (i.e., many more 
candidate analyses), and it is not atypical for the LEIA to be unable to fully resolve the ambiguity 
based on ontological and lexical constraints alone – other contextual heuristics can be needed, 
which is the topic of a different paper in progress. The point here is that fragmentary inputs can 
be classified as “unexpected input” because not all of an argument-taking word’s needs are 
immediately fulfilled, making it necessary for the LEIA to reason over  partial information. We 
have implemented this reasoning by making the LEIA disambiguate only to the degree that a 
person given the same fragmentary input could disambiguate.     

3.2  Preposition Swapping 
Prepositions are a common source of performance error by non-native speakers and native 
speakers alike. For example, the subtitles for the Finnish TV series Easy Living are of very high 
quality overall but include some unusual preposition selections. Considering that English is the 
current lingua franca, with many speakers having non-native fluency, it is of high priority for 
LEIAs to accommodate this type of close-but-not-perfect input. The following examples from the 
COCA corpus (Davies, 2008) illustrate this phenomenon. They all use the expression translate to 
in place of the canonical translate into in reference to translating languages:7 And you can feel 
this tension with every sentence that you say, and this tension can not [sic] be translated to any 

                                                
5 For simplicity’s sake, this example assumes the active voice.  
6 This filler for the TIME slot is a call to a procedural semantic routine that attempts to ground the moment of speech in 

real time, and then analyzes the past tense as “before that actual time”.  
7 There are several non-literal uses of translate to (not into) that expect different types of arguments semantically, as 

shown by the following examples from COCA: That relationship translated to a better learning environment; …but 
the controls are just like a video game's—only translated to a physical toy; … advancements in diagnosis and care as 
well as treatment in humans, is translated to pets — specifically canines… 
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other language; NPR also reported the context of the slip-up, translated to English: “If each one 
of us does not amass riches only for oneself, but half for the service of others, … ”  

Clearly it is not that case that any preposition can be swapped for any other in any context. We 
have formulated the following three conditions, all of which must be met before a LEIA includes 
a “preposition swapping” analysis among its candidate analyses for the input.  
 

1.   The lexicon must contain a fixed expression (i.e., an idiom or construction) that matches 
the input lexico-syntactically except for the preposition choice. So we are not talking 
about free combinations of prepositions and their complements.  

2.   All of the semantic constraints for that fixed expression must fulfilled. In our example of 
translate X into [to] Y, X must be a language or text and Y must be a language. These 
constraints are specified in the lexical sense for canonical translate X into Y. 

3.   The preposition pair (here: into/to) belongs to a list of preposition pairs that we have 
found to be, or hypothesize to be, subject to swapping. These pairs either contain 
prepositions with similar literal meanings (in/into, into/to, from/out of, by/with, etc.) or 
they contain at least one preposition that is extremely semantically underspecified, such 
as of.  

 
As evidence of the need to recover from unexpected preposition use, consider the following 

examples from the COCA corpus, which contain unexpected prepositions as judged against the 
expectations recorded in our lexicon. The canonical, lexically listed prepositions are indicated in 
{ } after the unexpected, attested ones: … if we pull back the aid, they will no longer abide with 
{by} the treaty with Israel; No, I can not [sic] be absolved from {of} my blame; Changes 
indicated by the validation panel and field test were incorporated in {into} the instrument 
development; Practice began this week in anticipation for {of} the season opener at Virginia on 
Aug. 30.  

The question then becomes, if we find an attested example of an unexpected prepositional use, 
should it be recorded in the lexicon and treated ever after as canonical? The answer is “No” for 
three reasons. First, when we generate language we do not want to generate the less-preferred 
version. Second, our recovery procedure should be sufficient to detect the swapping dynamically 
and support a successful analysis, making static lexical recording unnecessary. Third, resorting to 
a recovery procedure models the additional cognitive load of processing unexpected input; this 
will result in a scoring penalty, meaning that successful analyses that are carried out without 
unexpected input processing will be preferred, as they should be. All that being said, the LEIA’s 
history of language analyses could be consulted when judging confidence in unexpected input 
processing. For example, if the LEIA found that particular preposition swap multiple times in its 
repository of past analyses, it could reduce the penalty for that swap to a fraction of the norm.  

3.3  Unexpected Realization of an Internal Argument 
One type of unexpected input attested in a recent evaluation (McShane et al., 2016) occurs when 
an input could have been correctly semantically analyzed using a verb sense available in our 
lexicon but the internal arguments were syntactically realized in an unexpected way. For example, 
at the time of evaluation, the lexicon covered the structure He begged me to come but not He 
begged that I come.  
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 Recorded:  subject  +   V  +   direct object         +   infinitive 
 Attested:  subject  +   V  +   [COMPL subject of clausal compl.  +   VP of clausal compl.]   

 
Given a syntactic mismatch like this, the question is: Is the recorded sense a syntactic variant of 
the attested sense, or is the attested sense something differently entirely? The LEIA attempts to 
determine this by first aligning the syntactic constituents using recorded, expectation-driven 
matching strategies (we don’t expect any magic to happen here – or elsewhere, for that matter), 
and then determining whether the semantic constraints on the arguments are met. For example, 
the subject and direct object of beg in our recorded sense must both be ANIMALs,  but there are no 
constraints on the meaning of the infinitival complement.  This means that, in the attested input, 
the subject of the main clause and the subject of the embedded clause must both be ANIMALs as 
well.  
 Our current implementation covers all verbs with the abovementioned syntactic expectations. 
We expect further corpus study to reveal other canonical syntactic pairings that will be useful to 
record as expected correlations.  

3.4  Extra Elements of Input 
In some cases, after all of the valencies of argument-taking words have been accounted for, extra 
words remain in the input. This category of unexpected input is well illustrated by our earlier 
Santa Barbara Corpus example. Consider a slightly edited version of an excerpt from that 
example: You'd stick it into the into, actually, into the actual oven. This includes the repetition of 
an incomplete constituent (into the into) and a parenthetical expression (actually) that intervene in 
what is in fact a quite simple sentence: You’d stick it into the actual oven. Although people find it 
easy to cut through this clutter – particularly in the spoken language, when intonation and pauses 
help – not so for LEIAs. The goal is to detect and strip away the superfluous elements, leaving 
only the core ones behind. We do this by stripping a list of interjections as well as repetitions of 
unigrams, bigrams, etc., up to 5-grams. So, the LEIA strips strings as indicated by the 
strikethroughs: When the, uh, uh, when the ship was beginning to move; The, the dog came from 
Puppy Jake Foundation.”8  

Stripping superfluous strings builds upon two past (and ongoing) threads of work that seek to 
focus the LEIA’s attention on the core elements of input: dynamic tree trimming, which we have 
applied successfully to the analysis of verb phrase ellipsis (McShane and Babkin, 2016a); and 
goal-oriented methods of achieving actionable – in contrast to necessarily comprehensive – 
interpretations of input (McShane and Nirenburg, 2015).  

3.5 Unknown Words 

The OS lexicon contains about 30,000 word senses, making it substantial but far from 
comprehensive. This means that LEIAs must be able to process both unknown words and 
unknown senses of known words – eventualities that we treat in turn in this and the following 
subsections.9 
 Processing unknown words begins by using the part-of-speech tag provided by Stanford’s 
CoreNLP toolset (Manning et al., 2014), which we assume to be correct due it high precision 
overall. We have created generic default lexicon entries for the main parts of speech in a variety 

                                                
8 The first is an excerpt from a COCA corpus example and the second is a full COCA example. 
9 For work on learning new words in a prior implementation of Ontological Semantics, see Nirenburg et al. (2007). 
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of syntactic environments that serve as the anchor for reasoning about semantics. We illustrate 
unknown word analysis using three simple examples of an unknown noun, verb, and adjective, in 
turn. 
 Unknown Noun. Syntactically, simple nouns take no arguments. Semantically, they can refer to 
an object, event, or property; so the LEIA generates three candidate senses for each unknown 
noun that allow for each of these semantic eventualities.10 Each of these candidate senses is then 
evaluated within the rest of the context, not only to choose the best one but, in many cases, to 
narrow down the interpretation to a more specific ontological type.   
 Consider the example A brooze was sleeping in the park. The lexicon contains senses for all of 
these words except for brooze. Since brooze is selected as the subject by the verb sleep, and since 
the verb sleep maps to the concept SLEEP, the LEIA can use its knowledge about SLEEP to narrow 
down what a brooze must be. Specifically, the subject of sleep maps to the EXPERIENCER of 
SLEEP, and the EXPERIENCER of SLEEP is ontologically defined as being an ANIMAL. This tells the 
LEIA two things. First, of its original three candidate senses of brooze – which mapped to 
OBJECT, EVENT, and PROPERTY – the OBJECT sense is the correct one. Second, the OBJECT analysis 
can be further constrained to ANIMAL, since only ANIMALs can experience SLEEP. So the final 
TMR for this example (as before, minus metadata and inverses) is: 
 
ASPECT-1          
 PHASE  CONTINUE 
 SCOPE  SLEEP-1 

SLEEP-1 
 EXPERIENCER      ANIMAL-1 
 LOCATION   PARK-1 
 TIME      < find-anchor-time 

 
The metadata carries a trace that unknown-word recovery was carried out, should the LEIA 
decide to pursue a more fine-grained analysis of this word through learning by reading 
(Nirenburg et al., 2007) or by interacting with a human collaborator (McShane and Nirenburg, 
2015). 

Our second example – Jane was eating kuzdra with a knife – shows what happens when a case-
role slot has a set of semantic constraints rather than just one. The verb eat has several senses in 
our lexicon, all but one of which cover idiomatic constructions that are rejected on lexico-
syntactic grounds (e.g., eat away at); so the LEIA can immediately narrow the choice space to the 
main sense of eat, which is optionally transitive and maps to an INGEST event whose case-roles 
are AGENT and THEME. The THEME of INGEST is ontologically specified as the disjunctive set 
DRUG or INGESTIBLE. Since both drugs and ingestibles are of the type OBJECT, the LEIA selects 
the OBJECT candidate sense for analyzing the unknown word kuzdra (rejecting the EVENT and 
PROPERTY senses). As before, it uses ontological constraints to narrow down the interpretation 
but, this time, both members of the disjunctive set must be permitted. Formally, this is done with 
the typical set notation used in TMRs, making the final TMR for this input as follows:  

 
 
 
 
 

                                                
10 This is functionally equivalent to creating a single sense with a semantic disjunction, which was technically more 

cumbersome. 



EXPECTING UNEXPECTED INPUT 

9 

 
 

ASPECT-1 
 PHASE       CONTINUE 

SCOPE       INGEST-1 

HUMAN-1 
 AGENT-OF    INGEST-1 

HAS-NAME    Jane 

INGEST-1 
 AGENT    HUMAN-1 
 INSTRUMENT KNIFE-1 
 THEME    SET-1 
 SCOPE-OF   ASPECT-1 

TIME     < find-anchor-time 
 

SET-1 
 THEME-OF      INGEST-1 
 SET-MEMBER-TYPE   DRUG INGESTIBLE 

SET-TYPE       disjunctive 
 

Unknown Adjective. Syntactically, adjectives modify a noun. Semantically, they map to a 
PROPERTY, and the noun they modify fills the DOMAIN slot of that property. The RANGE, however, 
depends on the actual meaning of the adjective. For example, the subject noun phrase in the 
sentence A wugly police officer was driving a red car includes the unknown adjective wugly. The 
LEIA’s analysis of wugly police officer is (POLICE-OFFICER-1 (DOMAIN-OF PROPERTY-1)), with 
PROPERTY-1 representing an instance of the most underspecified ontological property. If asked to, 
the LEIA can generate the entire set of properties for which POLICE-OFFICER is a semantically 
acceptable filler for DOMAIN. Although this would be far smaller than the full set of properties in 
the ontology, in most cases it will be too large to be of much more utility than the generic 
PROPERTY. The point, however, is that the LEIA’s understanding of unknown adjectives mirrors 
that of a person: we, too, don’t know what wugly is beyond the fact that it is a property that can be 
used to describe police officers.   
 Unknown Verb.  Syntactically, verbs can take various numbers and types of arguments and 
complements, and these can be realized semantically in various ways. The LEIA reasons about 
the syntax-to-semantics linking using an inventory of default expectations. For example, 
transitive verbs most often realize the subject as the AGENT and the direct object as the THEME; 
however, if the subject cannot, semantically, be an AGENT (e.g., if it is an EVENT or INANIMATE-
OBJECT), then the most likely candidates are THEME  or INSTRUMENT, depending on (a) the 
meaning of the entity and (b) which other case-roles have already been spoken for by the input. 
For example, given The truck bloophed the tree, the truck cannot be the AGENT since it is 
inanimate. So the LEIA evaluates whether it can be the THEME: it cannot, because the THEME 
case-role is already taken. So it selects the next-in-line case-role for inanimates: INSTRUMENT.  

Now consider the example John kuzdered the woman for the argument. Syntactically, the LEIA 
analyzes this as a transitive verb with a free PP adjunct. Semantically, it maps kuzdred to the most 
generic EVENT, filling its AGENT slot with the interpretation of John (HUMAN-1 (HAS-PERSONAL-
NAME John)), filling its THEME slot with the interpretation of the woman (HUMAN-2 (GENDER 
FEMALE) (AGE (> 15))), and interpreting the free PP adjunct for the argument as an ARGUE event 
that is the PURPOSE of ‘kuzdred’. Of course, it is impossible for people, no less LEIAs, to know 
whether PURPOSE is the best case-role selection for representing the meaning of the PP adjunct. In 
fact, regular sentences (those lacking unknown words) with PP adjuncts often result in residual 
ambiguity due to the extreme challenges of disambiguating highly polysemous prepositions.  
However, the quite separate problem of analyzing free PP adjuncts should not detract from point 
of this example: that default correlations between syntactic arguments and semantic roles can 
result in a reasonable, albeit underspecified, interpretation for inputs with unknown verbs. As in 
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previous examples, the LEIA could also attempt to narrow down the interpretation of the 
underspecified EVENT based on unidirectional case-role constraints: here, kuzder can refer to only 
those events that permit a HUMAN as the AGENT and a HUMAN as the THEME – a large subset, to be 
sure, but much smaller than the entire inventory of events in the ontology.  

3.6  An Available Lexical Sense is of the Wrong Part of Speech 
It is not unusual for the lexicon to contain a needed string but in the wrong part of speech: e.g., a 
text might contain the verb heat (A large radiator was heating the room) whereas the lexicon 
contains only the noun heat. The first thing to say about such situations is that there are many 
possible eventualities. For example, the lexicon might contain exactly one nominal sense which, 
luckily, is semantically related to the needed verbal sense; the lexicon might contain multiple 
nominal senses, one of which is related to the needed verbal sense; or the lexicon might contain 
one or more nominal senses, none of which is related to the needed verbal sense. Similar sets of 
eventualities can obtain when a known nouns seeds the analysis of an unknown verb. Our basic 
approach to these cases is as follows. For exposition (and to avoid endless singular/plural 
options), we assume that there is just one recorded sense of each string; if there is more than one, 
the process iterates over all possibilities and generates multiple options. 

Let us work through the abovementioned example, A large radiator was heating the room, in 
which a recorded nominal sense must be used to analyze an unknown verb. This example is 
particularly interesting because the noun in question, heat, maps not to an OBJECT or EVENT, but 
to an ontological PROPERTY: TEMPERATURE. For reasons described in McShane et al. (2008), we 
treat CHANGE-EVENTs specially, since their meaning best captured by comparing the value of the 
given property in the PRECONDITION and EFFECT of the CHANGE-EVENT. For example, accelerate 
indicates an increase in the value of SPEED, shrink indicates a decrease in the value of SIZE, and 
fatten indicates an increase in the value of WEIGHT.  The TMR for the example A large radiator 
was heating the room is shown below. 

 
ASPECT-1 
    PHASE     CONTINUE 
    SCOPE     CHANGE-EVENT-1 

CHANGE-EVENT-1 
 THEME     ROOM-1 
 INSTRUMENT  HEATER-1 
 SCOPE-OF    ASPECT-1 
 PRECONDITION   TEMPERATURE-1 
 EFFECT                  TEMPERATURE-2 
     TIME              < find-anchor-time 

TEMPERATURE-1 
 DOMAIN    ROOM-1 
 RANGE     < TEMPERATURE-2.RANGE 

TEMPERATURE-2 
 DOMAIN     ROOM-1 

RANGE     > TEMPERATURE-1.RANGE 

HEATER-1 
 SIZE       .7  

INSTRUMENT-OF CHANGE-EVENT-1 
 

Consider how much agent reasoning required to arrive at this analysis. (1) The LEIA finds the 
noun heat described as (TEMPERATURE (RANGE (> .8))). (2) It recognizes this as a CHANGE-EVENT 
situation: a noun with a property-based description is being used to analyze an unknown verb. (3) 
It instantiates a CHANGE-EVENT along with PRECONDITION and EFFECT slots. (4) It hypothesizes 
the direction of change (i.e., the comparison between the range of TEMPERATURE in the 
PRECONDITION and EFFECT) based on the RANGE of the property in the nominal sense: if the 
nominal sense has a high value (like our .7), then it assumes that the direction of change is 
increase, whereas if the nominal sense has a low value, then it assumes that the direction of 
change is decrease. (5) It interprets the THEME of the CHANGE-EVENT (ROOM-1) as the DOMAIN of 
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the TEMPERATURE frames. (6) It deals with other semantic analysis needs, such as lexical 
disambiguation of the theme and the analysis of tense and aspect 

4. Comparison with Others 
Full-fledged computational semantics has not been pursued by the mainstream natural language 
processing community for over twenty years. The programs of work that most closely resonate 
with ours peaked before the so-called statistical revolution in NLP: Schank’s Conceptual 
Dependency Theory (Schank, 1972) and Wilks’ Preference Semantics (Wilks, 1985). As concerns 
incremental semantic analysis, it was attempted already in the 1980s, e.g., by Mellish (1985) and 
Hirst (1988). Both Mellish and Hirst draw analogies between incremental semantic analysis and 
vision research, with Hirst calling his approach Polaroid Words. More recent work on 
incrementality is represented by Jerry Ball’s incremental syntactic parser (Ball et al., 2014) and 
Ruth Kempson’s (2000) Dynamic Syntax. Although the latter is a purely linguistic (rather than 
computational linguistic) theory, it was used by Purver at al. (2011) as the theoretical substrate for 
an incremental parser.  

A newcomer to cognitively-inspired language processing is a the program of work reported in 
Lindes and Laird (2016). It is gratifying to see another research group addressing the issues – and, 
in general terms, embracing the approaches – that Ontological Semantics has been long pursuing. 
We second Lindes and Laird’s claim that all of the following ten features are crucial for human-
level language processing: the processing must be incremental, integrated, eclectic, useful, and 
carried out in real time; it must be compositional, hierarchical, and grounded; it must compute 
context-dependent meaning and include repair-based processing. It is noteworthy that Lindes and 
Laird echo our use of “actionable” interpretations (McShane and Nirenburg, 2015) as the goal of 
language-endowed intelligent agents.  

5. Discussion 
In developing agent-based language understanding capabilities, one can focus on domain-
independent strategies, domain-specific strategies for which agents have extensive knowledge and 
reasoning support, or strategies that fall somewhere in between. This work contributes to the 
domain-independent thread – as has our recent work on processing various other types of difficult 
linguistic phenomena, such as verb phrase ellipsis (McShane and Babkin, 2016a) and broad 
referring expressions (McShane and Babkin, 2016b).  

There are both scientific and tactical reasons for pursuing domain-independent strategies in 
addition to domain-specific ones, even if one’s overall goal is configuring human-level intelligent 
agents that will necessarily have extensive domain knowledge. On the scientific side, strategies 
like the ones described above actually are domain-independent and reflect domain-independent 
reasoning, so casting them as such is correct from the perspective of human-inspired cognitive 
modeling. On the tactical side, they can be launched over any corpus and contribute to the work 
of mainstream NLP, for which large corpora – and the non-reliance on knowledge support – are 
the object of interest. So, even though our LEIAs cannot, today, generate completely correct 
semantic interpretations of every input (additional well-understood types of knowledge 
engineering are needed to increase system coverage), they can analyze many inputs in the general 
domain with high confidence, and those analyses could be leveraged in interesting ways, we 
think, by the statistical NLP community.  
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By contrast, recovering from unexpected input in narrow domains will require supplementing 
these domain-independent strategies with a battery of knowledge-based, reasoning-heavy 
processes that leverage the LEIA’s knowledge about its own plans and goals, those of its 
interlocutor, its understanding of the situation, etc. We leave the description of our approach to 
these kinds of recovery for a future paper, but interested readers can find relevant past work in 
our descriptions of the Maryland Virtual Patient application (McShane et al., 2012, 2013a, 
2013b). 

Of the many additional issues we could address in this discussion, we focus on three that were 
noted by reviewers: coverage of phenomena, the state of implementation of the system, and 
evaluation. 
 Coverage of phenomena. The six types of unexpected input described here represent a subset of 
the unexpected-input phenomena that LEIAs will need to treat. For example, multi-party 
interactions feature overlapping utterances, interruptions, and people finishing each other’s 
sentences; noisy-channel inputs can render some fragments uninterpretable/untranscribable; and 
transcripts produced by speech recognition systems are subject to error. (The latter, of course, 
means that word recognition should ideally be approached by comparing candidate transcriptions 
with the LEIA’s context-based expectations about which words and phrases are most likely to 
occur.) Moreover, not only are there many classes of unexpected input, their realizations can be 
combined so densely in naturalistic discourse that the task must change from translating non-
canonical inputs into their canonical counterparts, to trying to compose islands of meaning from a 
sea of uninterpretables. McShane and Nirenburg (2015) describes the latter in the context of 
pursuing actionable language analyses, which can be done by agents in a goal-directed manner. 
Our lab’s plans for the summer and fall of 2017 include the development of a larger, example-
supported classification of unexpected input through the analysis of speech corpora. We will then  
develop programs to convert the unexpected phenomena into their expected-input counterparts. 
We intend to report on this at next year’s ACS conference. 
 The state of implementation. All six of the recovery phenomena reported in this paper were 
implemented and tested within the overall OntoSem2 system. The test suite is as follows (see 
related discussion with respect to evaluation). 
 

• Preposition swapping: “They will not abide with the treaty with Israel.” (by/with); “He 
offset the lost time with working more.” (by/with); “This absolved him from the 
obligation.” (of/from); “They booted him out from the club.” (of/from); “They 
incorporated faith in the conversations.” (into/in); “A woman was harassed by a convict 
employed to enter data in a database.” (into/in); “Practice began in anticipation for the 
game.” (of/for) 

• Stripping repetitions and interjections: “When the, uh, uh, when the ship was beginning 
to move à When the ship was beginning to move.” “The, the dog came from Puppy Jake 
Foundation. à The dog came from the Puppy Jake Foundation.”  

• The lexicon includes the verb but with different syntactic expectations: “He begged me 
to come. à He begged that I come.” “He backed the car up. à He backed up the car.”11 

                                                
11 The latter example generalizes to all of the verbs in the lexicon with the syntactic structure “subject + verb + 

{prepositional particle and direct object, in either order.} We record on word order and derive the other (though we 
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• The lexicon contains the string as a verb but not as a noun: “He won the award.” “I 
had a good cry.” “Get a good grip.” 

• The lexicon contains the string as a noun but not as a verb: “The drizzle stopped.” 
“My jog was great!” “A large radiator was heating the room.”  

• Unknown adjective: “The wugly man slept.” 

• Unknown noun: “The wug slept.” 

• Unknown verb: “I wug the house on the street.” “I wugged the bread.” “I wugged.” 
 
OntoSem2’s recovery from these unexpected inputs worked as expected and the system generated 
at least one candidate TMR for each.   

Describing the overall capabilities of OntoSem2 to a useful level of detail would require much 
more space, so a thumbnail sketch will have to suffice. OntoSem2 can generate TMRs for inputs 
with the following features: (1) they syntactically conform to a mid-sized grammar of typical 
syntactic structures, or they can be made to conform to this grammar by unexpected-input 
processing of the types described here; (2) either all of the lexemes are attested in the OntoSem 
lexicon in the expected parts of speech, or there is a single unknown one that the system can 
recover from using the procedures described above. Most words in any input are polysemous, and 
our 30,000-sense lexicon does not shy away from recording polysemy. This results in multiple 
candidate TMRs for most inputs. The LEIA automatically scores each TMR candidate based on 
an inventory of heuristics.12 The score approximates the agent’s confidence in that interpretation 
as the correct one for the input. The OntoSem2 implementation is currently ongoing. Our team is 
small, and the stack of phenomenon-treatment specifications ready to be implemented is, not 
surprisingly, still large.         
 Evaluation. The above logistics-related statements offer part of the explanation for why this 
paper does not include a formal evaluation: formal evaluations are expensive and they compete 
for developer time. But the issue of evaluation raises an even more important question: What 
added value would a formal evaluation have for the content and goals of this particular paper?  

In the spirit of the times, people expect numerical evaluations of all work in NLP. However, 
practically all modern-day NLP systems are statistical rather than knowledge-based, and widely-
accepted evaluation practices reflect this orientation. For example, Resnik and Lin’s (2010) book 
chapter, entitled Evaluation of NLP Systems, does not even consider trying to evaluate the kinds 
of scientific goals we pursue. They write, “…Such scientific criteria have fallen out of 
mainstream computational linguistics almost entirely in recent years in favor of a focus on 
practical applications, and we will not consider them further here.” (p. 271)  

In order to usefully evaluate a psychologically-inspired, knowledge-based, cognitive system, 
the evaluation must be phenomenon-specific, carefully designed, and rigorously argued for –  
otherwise readers will not be convinced that it can count as evaluation. Moreover, the most 
scientifically interesting aspects of an evaluation involve error analysis and correction, the status 

                                                                                                                                            
could, alternatively, have recorded duplicate lexical senses for all such cases as well; these knowledge representation 
methodologies will produce the same processing results). 

12 For a list of heuristics in the original OntoSem implementation, which is largely followed here as well, see McShane, 
Nirenburg and Beale (2016). 



M. MCSHANE, K. BLISSETT & I. NIRENBURG  

14 

of which can only be understood on the basis of no small number of system details. In published 
reports, all of this takes up space, making it unsuitable for a conference paper.  

In addition, if we were to provide a formal evaluation of what we have presented here, what 
should it look like and why? Before trying to answer that directly, let us start with some facts that 
we believe do not require evidence beyond what we have presented: (1) The phenomena we 
describe exist in naturalistic speech. (2) Syntactic parsers, including the one we use, do better on 
canonical syntactic inputs than on non-canonical ones. (3) OntoSem2’s main analysis routine 
requires a valid syntactic parse, which helps the analyzer to carry out lexical disambiguation and 
the establishment of the semantic dependency structure. If syntactic analysis fails, so, too, does 
semantic analysis – at least currently (we are working toward removing this brittleness). (4) 
Different corpora representing different language genres will have very different amounts and 
manifestations of unexpected input, so the results of any such evaluation would not be 
generalizable. (5) The utility of new linguistic descriptions and associated algorithms is not 
inexorably linked to the overall quality of a particular agent system at a particular time; i.e., 
overall OntoSem2 evaluation is relatively inconsequential to this report. If readers are to use the 
information presented here, it will most likely be by using these descriptions to facilitate 
implementations in their own systems.  

One could argue – and many do – that the only worthwhile evaluation involves showing an 
improvement in the agent’s behavior in an end application due specifically to the newly reported 
functionalities. We agree that this is the gold standard. But the question then becomes, whence 
the test application? There are at least three possibilities. First, one can develop a fully deployed, 
useful system and add functionalities to it over time. For the MVP system – our most realistic 
candidate – this would cost on the order of $20M to just get the ball rolling. Another option is to 
use a smaller prototype system that has the potential to grow into a useful end application. We 
are, in fact, working toward this but do not expect to have reportable convergence of the agent’s 
full inventory of perception-reasoning-action capabilities in the very short term. Under this 
constraint it could take years for us to be able to report tangible progress on the knowledge end, 
which would be unfortunate. Finally, one can invent a toy application solely for evaluating a 
particular new functionality; but not only would this be very time-consuming and expensive, toy 
applications tend to elicit even more criticism than missing evaluations. 

 Over the years our group has invented novel evaluation strategies for various aspects of our 
language processing systems, such as lexical disambiguation (McShane, Nirenburg & Beale, 
2016), the understanding of multi-word expressions (McShane, Nirenburg & Beale, 2016), and 
the resolution of verb phrase ellipsis (McShane & Babkin, 2016a). Each evaluation has taken 
months, and the knowledge-based analysis of errors has occupied a large portion of the associated 
journal articles. We mention this in closing to emphasize that we are in favor of evaluation when 
we can see a clear reason for it but, with respect to this particular knowledge-oriented 
contribution in this particular venue, we believe that the candle would not have been worth the 
flame.   
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