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Abstract
In this paper, we develop a model of performance on Raven’s Matrices—a commonly used test of
human intelligence. Raven’s matrices are presented in a visual form but require high-level (e.g.,
rule-based) reasoning. Integrating high-level reasoning and visual processes is a challenge for mod-
els of Raven’s matrices. To address this, we present a new approach to modeling Raven’s matrices
which integrates deep learning networks and rule-based reasoning. Matrix problems require sub-
jects to complete a pattern of visual figures by selecting one figure, among a set of alternatives,
which best completes the pattern. Our model solves matrices by progressively observing the layout
of their visual features and detecting changes between pairs of visual figures using a deep neural
network. These changes are used to infer the distribution of visual features in the matrix and to
evaluate each alternative for a fit using a set of rules. This model constitutes only a first step to-
wards eventually developing a psychologically realistic model of human performance on Raven’s
Matrices.

1. Introduction

The Raven’s progressive matrices (RPM) tests are a family of intelligence tests which are composed
of sequences of increasingly difficult items (Raven et al., 1998). Each item consists of two arrays of
visual figures, the matrix and the answer array. The matrix is a square array of visual figures that is
missing a part. The answer array contains several figures, one of which best completes the matrix.
Subjects are instructed to pick the answer array figure which best completes the accompanying
matrix; an item is complete when a figure is selected. RPM were designed for the measurement
of eductive ability, which is the ability to make sense of complex novel stimuli (also known as
fluid intelligence), but they have since been found to also provide reliable measurements of general
intelligence. Several versions of the tests exist, each optimizing the format’s discriminative power
for specific assessment scenarios. The standard version of RPM, the Standard Progressive Matrices
(SPM), are optimized for general assessment of children and adults. Two alternative versions of the
test, the Coloured Matrices and the Advanced Matrices, are designed for increased discriminative
power in the lower and higher ranges of the scoring spectrum respectively.
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Computational cognitive models of intelligence tests are seen to be a promising avenue of re-
search both for improving our understanding of the psychological demands of intelligence tests and
for basic research in artificial intelligence (Hernández-Orallo et al., 2016). Since eductive ability
and cognitive processes are both thought to be biologically determined, RPM has attracted atten-
tion from modelers seeking to understand the contributions of basic cognitive processes to general
intelligence (see e.g., Carpenter et al., 1990). Modeling research has targeted the cognitive mech-
anisms enabling RPM performance as well as sources of variability in performance. In what con-
cerns mechanisms, modelers have investigated working memory (Carpenter et al., 1990; Ragni &
Neubert, 2014), rule induction (Carpenter et al., 1990; Rasmussen & Eliasmith, 2014), analogical
reasoning (Lovett & Forbus, 2017) and iconic processing (Kunda et al., 2013; McGreggor et al.,
2014). As for variability in performance, modelers have investigated differences between high ver-
sus low performers (Carpenter et al., 1990), item difficulty (Carpenter et al., 1990; Ragni & Neubert,
2014; Lovett & Forbus, 2017), cognitive decline (Rasmussen & Eliasmith, 2014), and differences
between typically developing versus autistic subjects (Kunda et al., 2010). Some aspects of task
performance that have seen little or no attention include learning, the role of embodiment, basic
perceptual processes, and hybrid models combining sub-symbolic and symbolic processing. We are
interested in extending the RPM modeling tradition in these new directions.

A significant challenge in RPM modeling is due to the task’s visual format. This format has
prompted two prominent approaches to RPM model design, each with its own limitations. The
majority of implementations have foregone modeling basic perceptual processes involved in RPM
and focused on symbolic or analogical reasoning over abstract representations of RPM stimuli (e.g.,
Ragni & Neubert, 2014). However, foregoing basic perceptual processes has not prevented mod-
elers from incorporating higher-order perceptual processes. To date, modelers following the first
approach have prepared abstract representations by annotating matrix items; that is to say, in many
RPM models, human modelers/annotators have already performed much of the basic perceptual
work required to complete the task. In contrast, a minority of modelers have opted to implement
algorithms which solve RPM using transformations and similarity metrics on raw images (pixel ar-
rays) and to forgo symbolic processing (e.g., McGreggor et al., 2014). While this latter approach
has been successful from a computational point of view, these models appear to be incomplete from
a psychological point of view. This is because these models omit explicit processing of abstract
visual features, such as shapes, textures, and symmetry, which are believed to involve symbolic
representations. It is generally accepted that subjects reason about abstract visual features using
inferential or analogical processes while solving matrix problems (Carpenter et al., 1990; Lovett &
Forbus, 2017; Rasmussen & Eliasmith, 2014). An important experimental study in this regard is
that of Primi (2001), which shows that many difficult RPM problems require explicit control of per-
ceptual organization—that is to say, explicit selection of the abstract features used to characterize
matrix elements.

The challenge presented by the visual format of the RPM is modeling the processes of visual
perceptual abstraction required to obtain the kinds of abstract visual representations on which in-
ferential or analogical processes recruited by the task depend. This challenge is a difficult image
understanding problem which is addressed neither by models relying on annotated stimuli nor by
models which operate on raw images: the former are spared from having to tackle the task thanks
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to human annotators while the latter avoid it by design. A realistic model of the basic perceptual
processes responsible for generation of the abstract visual representations humans use in solving
RPM problems can place important constraints on the structure of these representations, and conse-
quently on the nature of the cognitive processes involved in task performance, which may otherwise
be left unaddressed. We are therefore interested in exploring a new direction in RPM modeling by
developing a model which simulates the processes of perceptual abstraction from raw pixel inputs
up to abstract visual features without any interventions by human annotators. We will discuss what
such an approach may contribute to the RPM modeling literature in Section 4.

Deep learning is a promising paradigm for this new approach. Deep neural networks are notable
for their success in image understanding tasks (classification, labeling, segmentation etc.; LeCun
et al., 2015), and they stand out for their ability to achieve high performance in these tasks from
pixel-level input. A striking example of the success of deep learning methods on tasks with pixel-
level inputs is the work of Mnih et al. (2013), who trained deep neural networks to learn successful
control policies on a range of Atari games from raw video input. Another relevant feature of deep
neural networks is their ability to learn hierarchical abstract representations of data (LeCun et al.,
2015). Deep convolutional neural networks are a common architecture for image processing ap-
plications; these networks have a feed-forward architecture consisting of a sequence of layers of
artificial neurons, where each layer can be viewed as the repeated application at different locations
in the image (convolution) of a set of local nonlinear filters. Layers in convolutional neural networks
tend to learn progressively more complex visual features, thus early layers tend to learn simple edge
detectors whereas units in later layers learn to detect features such as faces (see Zeiler & Fergus,
2014, for visualizations). Finally, it is also worth mentioning that convolutional neural network
architectures are themselves inspired by the architecture of biological visual neural networks. The
correspondence between biological visual neural networks and deep convolutional neural networks
is, in practice, rather loose; nevertheless, a deep learning approach to RPM can approximate task-
related low-level perceptual processes more closely than other existing approaches. Moreover, this
approximation can be improved by incorporation of additional known biological constraints on the
architecture of visual neural networks in order to serve as realistic neural models of visual pro-
cessing (Kriegeskorte, 2015). Put together, the considerations above suggest that deep learning is
a promising way to avoid manual annotation of matrix images, while, at the same time, enabling
models to extract and process abstract visual features.

Here, we present a new model of the human RPM performance which integrates a convolutional
neural network with rule-based reasoning. Our model, which is a first step towards ultimately de-
veloping a more psychologically realistic model, integrates both visual (subsymbolic) and symbolic
abilities: its perceptual apparatus, a deep convolutional neural network, allows it to abstract matrix
features which then inform its strategy, implemented in the form of a simple rule set. This model
introduces three novelties to the RPM modeling literature. To our knowledge, our model is the first
learning-based model of RPM, it is the first model of RPM that makes use of deep convolutional
neural networks, and it is also the first model of RPM to combine sub-symbolic and symbolic pro-
cessing. Finally, our model emphasizes the constraints of embodiment; we discuss this latter point
in greater detail below.
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Note also that, instead of the original Raven’s matrices, we used matrices from Matzen et al.
(2010). Matzen et al. developed matrix generation software based on an analysis of SPM item struc-
ture which was shown, in a norming study, to generate matrices that have psychometric properties
comparable to the original SPM problems. Since the generation software was developed at Sandia
National Laboratory, we call matrices generated with this software Sandia matrices. We chose to
use Sandia matrices instead of original Raven’s matrices for three major reasons. First, RPM tests
offer only a limited number of test items (e.g., 60 in SPM). We thought that the number of avail-
able matrices was much too small for training our network, moreover we were concerned that using
these items for training would compromise our ability to assess model performance on RPM. As
Matzen et al. point out, one way to overcome these problems is to generate novel matrices, which
is precisely what their software does. Second, the Matzen et al. norming study reports variation
in item difficulty by item type, error patterns by item type, and other similar data which we found
germane to the human modeling enterprise. Finally, we were further attracted to Sandia matrices as
they have a well-defined structure suitable for a simple approach to training a convolutional neural
network, a welcome feature given the exploratory nature of the present work.

2. Model

The visual system’s limited capacity to process fine visual detail is an important constraint human
embodiment places on RPM performance. RPM stimuli are large and intricate enough that subjects
tend to fixate individual matrix or answer array figures as they work through a problem. Indeed,
Carpenter et al. (1990) report that subjects tend to fixate back and forth between pairs of figures,
suggesting that they are comparing these figures. Our present model is based on a simplifying
assumption inspired by this observation. For the present purposes, we assume that all processing
in RPM is based on pairwise comparisons of the kind suggested by Carpenter et al.’s observation.
Under this assumption, subjects can inform their response for each matrix item by means of two
actions: they can choose which pair of figures to inspect and they can compare the features that they
observe, involving cognitive processes such as memory and executive control, in order to inform
their response. In general, test takers should look for visual features and make comparisons that
yield information about the correct answer. We can therefore define and evaluate a subject’s strategy
in terms of the observations and comparisons they are disposed to make (Kunda et al., 2013).

Matrices constrain viable strategies by virtue of their structure. We analyze the structure of a
matrix in terms of its visual lexicon and its layout. The visual lexicon of a matrix is a finite set of
visual features from which a matrix can be constructed. The term lexicon is meant to be suggestive:
just as there are many ways to segment an acoustic signal, there are many ways to segment a raw
matrix image (see Lovett & Forbus, 2017), but only some segmentations are allowed by the lexicon.
The layout of a matrix is the spatial distribution of visual lexical items in the matrix. RPM matrix
layouts consist of 1×1, 2×2, or 3×3 arrays of figures constructed out of basic elements in the visual
lexicon; elements of the visual lexicon are generally distributed among matrix figures according to
some pattern, we discuss several such patterns below. Next, answer arrays consist of several figures
similar to those found in matrices. Every matrix has a blank area near or at its bottom right corner;
this is the part that is considered missing. The blank must be filled with the answer array figure that
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(a) (b) (c) (d)

Figure 1. Sandia matrices and their answer arrays. The following types are depicted: Type II (a), Type III (b),
Type IV (c) and composite Type II-III (d) .

fits the matrix best. According to the present analysis, this would be the answer array figure which
agrees with the matrix visual lexicon and matrix layout the most. A sound strategy for an arbitrary
matrix would therefore be one which disposes subjects to discover the matrix’s visual lexicon, its
layout, and, ultimately, the answer array figure which agrees with these the most. An important
theoretical issue is whether a unique figure in the answer array best satisfies the constraints set by
a matrix’s visual lexicon and layout, as matrix problems must have exactly one correct answer in
order to be well-formed (Wang & Su, 2015). Sandia matrices satisfy this constraint by virtue of
their construction; however, it is unclear whether all original RPM problems satisfy this constraint.

The most influential analysis of RPM matrix structure is due to Carpenter et al. (1990); it con-
sists of a collection of heuristics describing matrix layout patterns. Our work, however, closely
follows Matzen et al.’s (2010) analysis of SPM, and this analysis does not map neatly onto that of
Carpenter et al. (1990). For this reason, we present our own analysis of RPM matrix structure which
closely reflects the Matzen et al. (2010) analysis and simplifies our presentation. Most analyses of
Raven’s matrices, including that of Carpenter et al. (1990), stipulate that matrix layouts preserve
features along rows or columns. Matzen et al. (2010) make the notable observation that, in addi-
tion to these layout patterns, some matrix layouts also preserve features along diagonal axes.1 This
observation enables our model to cover a large variety of matrices despite a minimal design (see
below). In some matrices, features (e.g., figure size) are progressively incremented as figures be-
come increasingly distant from the top left, Matzen et al. call this layout pattern an outward rule.
Finally, logic rules preserve logical relationships governing the presence of features between fig-
ures belonging to the same row (e.g., feature X is present in column 3 if it is present in column 1
and/or in column 2). Based on these observations by Matzen et al. (2010), we distinguish four basic
strategies which solve four distinct matrix types. It is worth noting that some matrices require the

1. These matrices follow distribution rules in the Carpenter et al. (1990) terminology.
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combined use of multiple basic strategies. See Figure 1 for samples of Sandia matrices solvable by
three of the four basic strategies, as well as a matrix solvable by a combined strategy.

• Type I matrices have a 1 × 1 format and feature a texture-like figure, a part of which is
missing. These matrices can be solved by comparing answer array items to the surroundings
of the blank. The solution is the answer array item which matches its surroundings in the
smoothest way. The Matzen et al. (2010) software does not generate Type I matrices (which
was considered too simple).

• Type II matrices are matrices where each feature is constant along at least one axis (see
below). These matrices can be solved by comparing matrix figures along linear scan paths.
Matrices of this type are necessarily in the 2× 2 or 3× 3 formats. The solution is the answer
which replicates all changes in figure attributes along each axis. Our model focuses on solving
matrices of this type.

• Type III matrices are what Matzen et al. call outward matrices. These matrices can be solved
by comparing matrix figures along the main diagonal. Matrices of this type are necessarily
in the 3 × 3 format. The solution is the answer which differs from the center element in the
same way as the center element differs from the top left.

• Type IV matrices have layouts which follow logic rules. They can be solved by comparing
differences in pairs within each row to corresponding pairwise differences in other rows.
These matrices are in the 3 × 3 format. The solution is the answer which differs from each
pair in the third row in such a way that these differences are identical to those in the other
rows.

2.1 Scope

Before describing our hybrid deep learning model of RPM in detail, some practical constraints on
the scope of its present implementation should be mentioned. The foregoing discussion elaborates
multiple strategies for tackling matrix problems, but, as our list suggests, each strategy solves a
limited set of matrix problems. For example, the reader can verify that a strategy for solving Type
II matrices, such as the one elaborated in the next subsection, may fail to solve Type III matrices
such as the one depicted in Figure 1b. Thus, the elaboration and/or selection of a strategy is a key
component of our model. However, for this paper we restricted our attention to implementing a
solution strategy only for Type II matrices. Our deep-learning-based model of RPM can later be
generalized to capture a wide range of human behavior on the task.

Among the different types of matrices, we chose to focus on Type II matrices. The ability to
solve these matrices gives our model a scope comparable to other models in the literature. Type II
matrices form a plurality of items in the SPM: over a third of all problems in the test, not counting
Type II-III composites, are Type II matrices (see Matzen et al., 2010, for an analysis of individual
SPM matrices).2 All rules identified in Carpenter et al.’s (1990) seminal paper can yield Type
II matrices. Furthermore, all Carpenter et al. rules, except figure addition or subtraction rules
which can yield Type IV matrices and quantitative pairwise progression rules which can yield Type

2. We counted SPM matrices B1 and B2 as Type II matrices since they have a completely uniform layout, satisfying our
definition of a Type II matrix.
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III matrices, necessarily yield Type II matrices. Our model is designed to solve Type II matrices
generated by the Sandia matrix generation tool (Matzen et al., 2010). These matrices are all of size
3× 3, however our procedure generalizes to 2× 2 matrices as well.

There is one final constraint on the scope of our present work which we briefly mentioned
in the introduction. Original RPM problems each have their own visual lexicon, though similar
elements tend to be repeated between matrices. This means that test takers must, for each matrix,
construct a working visual lexicon and amend it until they are able to solve the matrix problem.
This issue arises in relation to the problem of correspondence finding in Carpenter et al. (1990)
and is addressed by perceptual reorganization processes in Lovett & Forbus (2017). Determining
the visual lexicon associated with a matrix can be a difficult task, especially in more advanced
RPM items. Indeed, identifying the visual lexicon is closely connected with the role of perceptual
organization in RPM performance. Identifying the visual lexicon requires making decisions about
figure segmentation and other visual inferences, and many of these inferences depend, in humans, on
processes of perceptual organization. In the present paper, we do not address these. This restriction
was made possible by the fact that Sandia matrices all share a well-defined visual lexicon which
includes five matrix figure features: figure shape, shading, orientation, size, and number.

2.2 Solving Type II Matrices

Figure 2 shows a sampling of Type II matrices. The Matzen et al. (2010) software constructs Type
II matrices by first selecting up to three features which will vary in the matrix layout. Each feature
that varies is assigned an axis along which it will remain constant. These features are then assigned
distinct values along each available path aligned with their assigned axis. For example, if the hori-
zontal axis is selected as the axis along which a variable feature remains constant, as in Figure 2a,
the feature is assigned the same value within each row in the matrix but different values between
different rows. Note that this construction process determines the layout of the matrix; moreover,
it completely specifies the answer to the matrix problem. Our solution strategy rests on the claim
that one can solve Type II matrices by scanning and comparing figures along each axis. To get a
sense of the intuition behind this strategy, consider again the problem depicted in Figure 2a. This
problem can be solved by scanning the matrix along its horizontal and vertical axes. All cell figure
features, other than shape, are constant throughout the matrix. All features, including shape, are
constant along the horizontal axis. Shapes differ along the vertical axis. From these observations,
one can conclude that the answer is the second cell from the left in the bottom row of the answer
array. Our strategy for Type II matrices formalizes and systematizes this kind of reasoning for all
Type II matrices.

Note, following Matzen et al.’s (2010) analysis, that subjects can scan matrices along four dis-
tinct axes: horizontal, vertical, and two diagonal axes. Scans along each axis have a linear form if
matrix cell coordinates are interpreted to be in the integers modulo three (Z3). Interpreting matrix
coordinates thus, we can define these linear scan paths parametrically as the set of points ~x such that

~x = ~c · t+~b

where t is a parameter in Z3, ~c is a coordinate vector specifying the axis with which the scan path
is aligned, and ~b is the coordinate vector of a figure along the scan path. The vector ~c can be
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(a) (b) (c)

Figure 2. Instances of easy (a), medium (b) and difficult (c) Type II matrices and their answer arrays.

obtained by taking the difference of the coordinate vectors of two figures on the chosen scan path.
Consider, for example, the coordinate system for the matrix in Figure 2a where the top left figure
is the origin, and, for each figure, the first coordinate indicates its row index from top to bottom,
and the second coordinate indicates the column index from left to right. In this coordinate system,
the center-right figure has coordinates (1, 2) and the bottom left figure has coordinates (2, 0). The
vector (2, 0) − (1, 2) = (1, 1) (coordinate vectors in Z3 × Z3) defines the matrix axis with which
this pair of figures is aligned. This axis is the top-left-to-bottom-right diagonal axis as can be seen
from the fact that the vector (1, 1) takes the origin figure to the center figure. Thus, one equation for
the scan path which contains these example figures is given by

x = (1, 1)t+ (2, 0)

For t ranging in 0, 1, 2, this equation yields the following coordinate vectors: (2, 0), (0, 1) and
(1, 2). The three figures located at these coordinates belong to the same scan path aligned with
the top-left-to-bottom-right diagonal axis. Due to the symmetries of two dimensional vectors of
coordinates in the integers modulo three, a total of 12 distinct linear scan paths can be constructed.
These paths can further be spilt into groups of three, each group being aligned with one of 4 distinct
matrix axes. These 4 axes correspond precisely to those identified by Matzen et al..

Two pairs of cells are aligned with the same matrix axis if the two vectors obtained by taking
the difference of coordinate vectors within each pair are co-linear (in Z3 × Z3). It follows from the
construction of Type II matrices that for each image feature, there is always at least one axis along
which it does not vary, and if a feature varies along some axis then each figure on a path along that
axis exhibits a distinct value for that feature. Therefore, any pair of Type II matrix cells which are
aligned with the same matrix axis will differ with respect to the same properties. We can summarize
feature differences between a pair of matrix figures as a binary vector, with a value of 1 indicating
a difference with respect to the corresponding property and a value of 0 indicating no difference.
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We call such vectors attribute difference vectors. In this paper, we follow a convention whereby
attribute difference vectors for Sandia matrices indicate differences in shape, shading, orientation,
size and number in that order. For example, the pair consisting of the top left and middle figures in
the matrix depicted in Figure 2a should be assigned an attribute difference vector of (1, 0, 0, 0, 0) to
indicate that figure shapes, but not other features, differ between the two cells.

It follows from the above that any Type II matrix will exhibit at most four distinct attribute
difference vectors: one for each axis. It can be shown, by construction, that if attribute difference
vectors are known for each axis, one has a complete specification of the answer figure. For each axis,
one can pair a figure with the blank so that the pair is aligned with the chosen axis. We can construct
a figure which agrees with the matrix figure in each such pair on the features which are constant
along the chosen axis. Since every feature is constant along at least one axis, this construction
determines a value for every feature in the visual lexicon. To see that such a figure is in complete
agreement with the matrix layout, suppose that the blank were occupied by a figure constructed
according to this procedure. By construction, attribute difference vectors from pairs including the
constructed figure agree with the attribute difference vector of the corresponding axis for features
that remain constant along that axis. This agreement holds also for features that change along the
same axis. Consider such a changing feature. The constructed figure and its counterpart are, by
assumption, not aligned with respect to any axis along which this feature is constant. Consequently,
the value of the feature under question is inherited by the constructed figure from a scan path aligned
with the axis along which this feature is constant that differs from the scan path determining the
corresponding value for the constructed figure’s counterpart. Since, for features that vary along
some axis, figures on paths along that axis exhibit distinct values, the constructed figure must differ
from the matrix figure with respect to the feature under question.

2.3 Architecture

The above discussion shows, by construction, that axial attribute difference vectors can be used to
construct matrix answers; these vectors can equally be used to verify whether a given figure agrees
with the matrix layout. Our strategy is thus to discover matrix axial attribute difference vectors and
to then determine the answer array figure which best agrees with these vectors when inserted into
the blank. This strategy is an example of a response elimination strategy (Vigneau et al., 2006).
Our model simulates the processes of solving Type II matrices using this strategy. As explained
at the start of the present section, it does so by executing a sequence of pairwise cell comparisons
and using information from these comparisons to pick its answer. These comparisons can happen
within the matrix, and between pairings of answer array and matrix cells. This process is captured
by a rule set which collaborates with a deep convolutional neural network. The deep convolutional
neural network represents the model’s visual system. When the model chooses to analyze a pair of
figures, these figures are passed to the network as inputs. The network then estimates an attribute
difference vector for the input pair.

The model’s deep convolutional neural network simulates the process of abstracting visual fea-
tures from the raw image and that of detecting feature differences between pairs of images. See
Table 1 for network architecture details. The abstraction process is captured by a stack of three con-
volutional layers and two pooling layers. The process of detecting feature differences is captured
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Layer Type Filter Shape Transfer Function
1 Convolution 6× 2× 2 tanh(x)
2 Pool 3× 3 max(x)
3 Convolution 10× 2× 2 tanh(x)
4 Pool 2× 2 max(x)
5 Convolution 20× 2× 2 tanh(x)
6 Full 180× 30 2 sech(x)− 1
7 Full 30× 5 (1 + e−x)−1

Table 1. Parameters for network layers. The Filter Shape column lists dimensions of the weight array for the
corresponding layer if the layer is a convolutional (to be read depth × height × width) or fully connected
layer. For pooling layers, the Filter Shape column designates the pool size (height× width).

by two fully connected layers which receive input from the convolutional stack. During a forward
pass, each image is presented to the convolutional stack separately, the resulting outputs are then
collectively fed to the fully connected layers. The signal from the two images merge at the first fully
connected layer (Layer 6), which is designed such that its output is independent from the ordering
of input cells. The layer is rendered input order agnostic by the choice of an even transfer function
and a constraint on connectivity such that the input y6 to the layer has the form

y6 =Wx51 −Wx52 + b6 (1)

where W is a weight matrix, x51 is the Layer 5 output from the first cell in the pair, x52 is the
Layer 5 output from the second cell in the pair, and b6 is the layer bias. This arrangement has
the additional benefit of bestowing Layer 6 outputs with a theoretically germane interpretation. In
particular, each output can be interpreted as indicating the degree to which the two images differ
with respect to some specific feature by an amount set in the bias term; for this reason, we refer
to Layer 6 as the difference layer. Inputs to the network are two scaled (down by 255) and mean-
cancelled 28 × 28 grayscale (1 channel) rasters each depicting one cell in a cell pair. Training
examples for the network consist of pairs of figures taken from Sandia matrices or their answer
arrays as inputs and corresponding attribute difference vectors as outputs. Once the convolutional
neural network is trained, the model is ready to be run.

The model chooses its response by assessing the degree to which each answer cell violates the
matrix layout. To do this it computes a layout violation score for each answer figure. The layout
violation score is computed in three steps. First, attribute difference vectors are averaged by axis,
yielding summaries of attribute differences along each axis. Then, similar axis-based averages are
computed for each answer. The layout violation score of an answer array figure is then calculated
as the sum, over each axis, of the manhattan distance between the matrix and answer axial attribute
difference vector summaries. These operations are executed using all observed pairs and they are
controlled by the rules shown in Table 2. While, in this specific implementation, the model analyzes
all relevant pairs, this is not a necessity. The algorithm can, in principle, be run with omitted
observations. Indeed, selective omissions may be used to simulate fixation patterns characteristic of
human subjects performing the task, we discuss this possibility in greater detail in Section 4.
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Rule Condition Action
Analyze Pair There is a goal g to analyze some

pair, p, of matrix cells.
Analyze pair p, record results,
clear goal g.

Select Pair There is a pair, p, of matrix cells
that has not been analyzed

Set a goal, g, to analyze pair p.

Select Answer All pairs have been analyzed. Compute matrix layout violation
scores for every answer cell, se-
lect the answer cell with minimal
score as response.

Table 2. Model rule set. Rules are presented in order of precedence.

3. Computational Experiment

We tested our model on a subset of the stimuli used in the Matzen et al. (2010) norming study for
Sandia matrices. Matzen et al. generated a total of 840 matrices for their norming study. These
matrices were grouped into 20 test sets containing a complete and balanced assortment of matrix
types. Each of these 20 sets were presented to 4 subjects as part of the norming study. We sourced
our matrices from 6 of these 20 sets. We used all Type II matrices present in these 6 sets, a total of
108, for training and testing the model. The model was implemented in Python 2.7; the theano
(Theano Development Team, 2016) package was used for implementing the convolutional neural
network.

The model’s perceptual neural network was trained on pairs of cells from within the 108 matrices
in our data set. During testing, the model was presented both with within-matrix cell pairs and
with pairs of cells between the matrix and answer array, which it had not been trained on. Glorot
initialization (Glorot & Bengio, 2010) was used to determine initial weights and biases. Training
was performed using simple backpropagation augmented with early stopping (20% of training items
were randomly selected and set aside for validation) and a variable learning rate. Each epoch, the
learning rate was multiplicatively incremented if weight updates were found to improve training
error. Otherwise, updates were rolled back and the learning rate was multiplicatively decremented.
L2-regularized cross-entropy error was used as the cost function. See Table 3 for training algorithm
parameters.

We trained the network for 3000 epochs, testing the model at 500 epoch intervals and on the
weights selected by the early stopping algorithm. We found that the model performed maximally at
2000 and 2500 epochs. In both cases, it solved 78.7% of the 108 matrices correctly. Note that this
result was obtained with only a minimum amount of tweaking; with more parameter optimization,
even better results can be expected. In addition to investigating the overall performance of our
model, we were also able to compare it to human data from Matzen et al. (2010). Average human
accuracy on the 108 experimental matrices was 81.25%, close to our model’s performance.
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Parameter Value Interpretation
η 0.015 Learning rate
α 1.01 Learning rate increment
β 0.99 Learning rate decrement
λ 0.003 L2 regularization parameter

Table 3. List of training parameters, their values, and their interpretation.

4. Discussion

In this paper, we presented a model of RPM which integrates a deep convolutional neural network
with rule-based reasoning. This model solves one class of RPM problems using abstract visual
features extracted from raw images with no intervention from human annotators. We found that
our model performed at a level comparable to that of human participants on a representative set
of matrix problems taken from Matzen et al. (2010). We view this result as a promising first step
towards the development of a model of human RPM performance which goes beyond the existing
literature in its comprehensiveness.

Our model addresses a set of constraints on RPM task performance that other models in the
literature do not completely address. As discussed in the introduction, the visual format of matrix
problems has prompted two prominent approaches to RPM modeling, and one important differ-
ence between these two approaches has to do with how models represent RPM stimuli. In one
approach, the rule-based approach, stimuli are represented by means of hierarchical symbolic rep-
resentations whereas in the other, similarity-based, approach they are represented as pixel arrays.3

Representational differences between models following these two approaches are accompanied by
differences in processing. Models following the rule-based approach, among which we include
heuristic rule induction (Carpenter et al., 1990; Ragni & Neubert, 2014; Rasmussen & Eliasmith,
2014) and analogical (Lovett & Forbus, 2017) models, identify patterns governing the distribution
of abstract visual features within matrices and select answers which best comply with these pat-
terns. On the other hand, models following the similarity-based approach, among which we include
affine (Kunda et al., 2013) and fractal (McGreggor et al., 2014) models, identify image transforma-
tions which relate matrix figures and select answers which best agree with the patterns of observed
transformations.

The performance of rule-based models depends on the number and kinds of abstract visual fea-
tures they can represent as well as the complexity of available feature distribution rules. On the
other hand, similarity-based model performance depends on the metric properties of RPM stimuli
(two dimensional images in euclidian space) and the complexity of available image transformations.
Unlike existing models of RPM, our model’s performance is simultaneously and explicitly subject
to both sets of constraints. Limitations of knowledge and/or assumptions represented in the rule

3. The definition of these two approaches was inspired by the difference between the Analytic and Gestalt RPM algo-
rithms introduced by Hunt (1974). A rule-based model is an instance of the analytic algorithm, whereas a similarity-
based model is an instance of the Gestalt algorithm.
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set, including knowledge about which image features are subject to variation (visual lexicon) and
assumptions about matrix layout, place constraints on our model’s performance of the same kind as
that to which rule-based models are subject. To see how constraints to which similarity-based mod-
els are subject affect our model, we need to take a closer look at the model’s perceptual apparatus.
Our model’s perceptual apparatus estimates attribute difference vectors by summarizing activations
at the difference layer. As can be inferred from Equation 1, input to the difference layer is a linear
function of the vector difference between representations obtained from the convolutional stack of
the figures in a pair of interest. Therefore, given the final convolutional representation of one figure
in a pair and the input vector for the difference layer, the convolutional representation of the second
figure in the pair can always be obtained. In other words, our model identifies, as an intermediate
step in estimating the attribute difference vector for a pair of matrix figures, a transformation relat-
ing each figure in the pair. The complexity of these transformations depends on the complexity of
the convolutional stack and on the size of the difference layer. Metric properties of RPM stimuli
can also affect our model’s performance. For instance, if relevant matrix features are too small or
the model’s receptive fields are too large, the model may be unable to resolve these features and use
them to inform its response.

The human visual system has a limited ability to resolve spatial patterns and therefore to dis-
criminate visual features (as evidenced by e.g., contrast sensitivity functions; see Palmer, 1999, p.
163–165). At the same time, humans can process limited numbers of visual features at a time due
to the limits of visual short-term memory (see Marois & Ivanoff, 2005, for discussion) and they
identify some clusters of visual features more readily than others due to the effects of perceptual
organization (see Palmer, 1999, Chapter 6 for a review). The former constraints are best captured
by similarity-based models whereas the latter constraints are best captured by rule-based models.
For this reason, our model, which integrates features of both approaches, presents a platform which
can model the visual aspects of human RPM performance in a more comprehensive fashion than is
afforded by either approach on its own. That said, our model also has a number of limitations which
should not be left unaddressed. These limitations concern both model architecture and model task
knowledge, but we believe they can be addressed by further development.

The primary limitation of our model’s task knowledge is its specificity. All current model knowl-
edge is specific to Type II Sandia matrices. In particular, the model’s knowledge of the visual world
is limited to Sandia matrices, and its knowledge of matrix layouts is sufficient to solve arbitrary
Type II matrices, provided attribute difference vectors are correctly estimated (see Section 2.2). An
important prerequisite for the validity of test results is that subjects are unfamiliar with the test
(Raven et al., 1998). Thus, under normal circumstances human subjects bring only generic knowl-
edge about the visual world, in addition to general reasoning and observation skills, to bear on the
task. In other words, our model has too little general knowledge about the visual world and too
much knowledge about a specific kind of matrix problem in comparison to ordinary human subjects
taking the RPM tests.

A more psychologically realistic version of our model will need to have more general visual
knowledge and have much less a priori knowledge about the structure of matrix problems. One way
these requirements can be met is through use of different training data and network parameters, and
through modification of rules used. For instance, the model may have to produce more complex

13



C. S. MEKIK, R. SUN, D. Y. DAI

attribute difference vectors (e.g., by a higher number of dimensions, as determined by the number
of nodes available in the output layer of the perceptual neural network) in order to enable its rule
system to explicitly process a greater variety of visual knowledge. Another direction for improving
the psychological realism of our model has to do with learning. Currently, learning processes equip
our model with knowledge of the visual world by tuning its perceptual apparatus to relevant stimuli.
Human subjects acquire this kind of knowledge over the course of their development; that is, on time
scales ranging from months to decades. However, human subjects also learn within the duration of
a single RPM test. RPM items get progressively more difficult and build on concepts from previous
items, thus subjects can learn to solve more difficult matrices based on their experience with easier
ones (Raven et al., 1998). It may be possible to capture this kind of online learning by developing
a general procedure for inducing matrix layout patterns. Such a procedure would govern visual
exploration of matrix layouts and processes for inferring regularities based on such exploration.

Other modifications to the rule set may allow the model to better reflect individual differences
in task performance by more closely approximating human eye movement patterns. In this paper,
we defined a subject’s strategy in terms of the pairwise comparisons they are disposed to make and
in terms of how they make use of the resultant information to inform their response. This approach
is consistent with observations from modelers (e.g., Carpenter et al., 1990) and experimentalists
(e.g., Vigneau et al., 2006) that high and low performers on RPM tests exhibit different eye move-
ment patterns which are thought to reveal differences in strategy. While this is another interesting
direction for improving our model, some architectural refinements are required for meaningful cap-
ture of human strategies. An important discrepancy between the architecture of our model and that
of the human visual system is that our model can simultaneously compare two images whereas
humans must sequentially fixate two different locations in order to carry out similar comparisons.
The discrepancy can be remedied by a visual memory store that replaces the second input to the
model’s perceptual array. But this remedy only serves to highlight a second important architectural
limitation. In solving only a single matrix, our model currently makes 98 pairwise comparisons.
Individually storing an attribute difference vector for each of these comparisons in memory is at
odds with known limitations of human working memory. Working memory is an important contrib-
utor to RPM performance. Differences in working memory capacity are thought to be responsible
for individual differences in RPM performance and the working memory load induced by a matrix
problem is thought to be an important contributor to item difficulty (Vigneau et al., 2006). Thus
another direction for refining the architecture of our model is to more closely model the limitations
of human working memory. The final architectural refinement we consider here has to do with the
addition of perceptual organization processes into our model. As discussed earlier in this paper,
there is evidence that difficult matrix problems require explicit control of perceptual organization.
A prominent way to model perceptual organization in neural networks is to make use of lateral
inhibition (Grossberg et al., 1997). Our model could be extended to simulate explicit control of
perceptual organization processes by the addition of lateral connections to its perceptual array and
through a channel by which the rule set can exert top-down influence on the perceptual array.
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5. Conclusion

In contrast to previous work on modeling RPM, our approach has focused on learning and integrat-
ing perceptual (similarity-based) processes and rule-based processes. This was done through the
integration of a deep convolutional neural network with a simple rule system. This work represents
an approach to modeling Raven’s Progressive Matrices (RPM) which extends the existing literature
in three respects: it is the first learning-based model of RPM, it is the first model of RPM that makes
use of deep learning, and it is also the first model of RPM to combine sub-symbolic and symbolic
processing. Our model learns and carries out processes of perceptual abstraction that underly the
human ability to use inferential or analogical processes in order to solve RPM problems. We have
argued that our approach is conducive to capturing a set of cognitive constraints that existing ap-
proaches cannot completely capture and we have suggested several ways in which our model can be
refined towards this goal. We aim to refine our model in these directions in the hopes of improving
our understanding of the processes that underly human intelligence.
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