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Abstract
There has been significant amount of research in Stackelberg Security Games (SSG), and a common
assumption in that literature is that the adversary perfectly observes the defender’s mixed strategy.
However, in real-world settings the adversary can only observe a sequence of defender pure strate-
gies sampled from the actual mixed strategy. Therefore, a key challenge is the modeling of adver-
sary’s belief formation based on such limited observations. The SSG literature lacks a comparative
analysis of these models and a principled study of their strengths and weaknesses. In this paper, we
study the following shortcomings of previous work and introduce new models that address these
shortcomings. First, we address the lack of empirical evaluation or head-to-head comparison of
existing models by conducting the first-of-its-kind systematic comparison of existing and new pro-
posed models on belief data collected from human subjects on Amazon Mechanical Turk. Second,
we show that assuming a homogeneous population of adversaries, a common assumption in the
literature, is unrealistic based on our experiments, which highlight four heterogeneous groups of
adversaries with distinct belief update mechanisms. We present new models that address this short-
coming by clustering and learning these disparate behaviors from data when available. Third, we
quantify the value of having historical data on the accuracy of belief prediction.

1. Introduction

A Stackelberg Security Game (SSG) (Kiekintveld et al. (2009)) is a game between a defender, who
plays the role of a leader by deploying her limited security resources to protect a set of targets, and
an adversary, who acts as the follower by taking an action after observing the defender’s strategy.
Single-shot SSGs have been successfully used in the past by security agencies for the protection
of airports, ports and flights (Tambe (2011)). Recent research in SSGs has focused on domains
involving repeated interactions between the defenders and adversaries, such as the “Green Security
Game” domains, i.e. security of wildlife (Fang et al. (2016)) and fisheries (Haskell et al. (2014)).

In an SSG, the defender’s pure strategy is an assignment of a limited number of security re-
sources to the set of targets. The defender’s mixed-strategy is then defined as a probability distribu-
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tion over the set of all possible pure strategies. An equivalent description (Korzhyk et al. (2010)) of
these mixed strategies is a probability distribution over the set of targets. In both single-shot and re-
peated game domains the defender first computes an optimal mixed strategy and then deploys pure
strategies (protection at some targets) which are sampled from the optimal mixed strategy. Most
existing work in SSGs on modeling adversary behavior assumes that adversaries have access to the
actual mixed strategy of the defender while optimizing their own attack strategies (Tambe (2011)).

However, the above assumption does not always hold in real-world setings. Therefore, a key
challenge in these settings is the modeling of adversary’s belief formation about the defender’s strat-
egy based on limited observations. Several models have been proposed, both in the SSG literature
(An et al. (2012); Pita et al. (2010)) as well as in psychology (See et al. (2006)) that address this
problem in different ways. While An et al. (2012) proposed a Bayesian belief update model as-
suming perfectly rational adversaries, Pita et al. (2010) proposed a linear mixture model assuming
boundedly rational adversaries. The goal of this paper is to present a comprehensive study of belief
formation models applicable to SSGs, highlighting their strengths and shortcomings and introducing
new computational models to address these shortcomings. The key contributions are as follows.

First, the literature lacks empirical evaluation or a head-to-head comparison of existing belief
formation models. Indeed, in the absence of a comprehensive analysis it is unclear as to which
model(s) are better suited for estimating adversary beliefs in SSGs. To address this shortcoming,
we conducted the first-of-its-kind systematic comparison of existing and new proposed models of
adversary belief update. Our extensive analysis with 24 different models (we present 16 models in
this paper due to lack of space) on human subjects data collected from Amazon Mechanical Turk
(AMT) through a simulated online SSG game highlights key insights about the human belief update
process and demonstrates the strengths and weaknesses of these models. Second, existing belief up-
date models assume the presence of a homogeneous population of adversaries with the same belief
update mechanism (An et al. (2012); Pita et al. (2010)). However, our analysis shows the presence
of four heterogeneous groups of adversaries with distinct belief update processes. We present a new
model called B-REACT (Belief model for heteRogenEous Adversaries using ClusTering) that ad-
dresses this shortcoming by learning about the adversary’s beliefs based on historical data combined
with a clustering based approach. We demonstrate that this new model completely outperforms ex-
isting and other proposed models, thus emphasizing the importance of modeling heterogeneity in
human belief formation. Third, existing work simply assumes that no historical data about adversary
beliefs will be available. Therefore, the literature lacks models that can take advantage of historical
data (when available) by learning about the adversary’s belief update process and then making more
accurate belief predictions. Therefore, we propose models for settings where data is available and
quantify the value of having population-wide or historical data on belief prediction accuracy.

2. Background

As briefly mentioned earlier, in an SSG, the defender plays the role of a leader who protects a set
of targets from the adversary, who acts as the follower (Kiekintveld et al. (2009)). The defender’s
pure strategy is an assignment of a limited number of security resources M to the set of targets T .
An assignment of a resource to a target is also referred to as covering a target. A defender’s mixed
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strategy in an SSG can be compactly represented as a probability distribution over the set of targets:
x (0 ≤ xi ≤ 1;∀xi, i ∈ T ;

∑|T |
i=1 xi = M).

A pure strategy of an adversary is defined as attacking a single target. The adversary receives
a reward Rai for selecting i if it is not covered and a penalty P ai for selecting i if it is covered.
The expected utility for the adversary for attacking target i is Uai (x) = (1 − xi)Rai + xiP

a
i . For

simplification purposes, we assume a zero-sum game and therefore the defender’s expected utility
is Udi (x) = −Uai (x). Although a perfectly rational adversary would choose to attack the target with
the highest expected utility, more recent work has focused on modeling boundedly rational adver-
saries in SSGs . Below we introduce two models for generating the optimal defender strategy, one
considering a perfectly rational adversary while the other assumes a boundedly rational adversary.
Pure strategies sampled from the optimal mixed strategies computed based on these models were
used in our game to collect data about the adversary’s belief estimation process.

Maximin: A game-theoretic concept that generates an optimal defender strategy assuming a
perfectly rational adversary who attacks the target that minimizes the defender’s utility the most.

Subjective Utility Quantal Response (SUQR): SUQR (Nguyen et al. (2013)) is a popular
human behavior model used in SSGs that builds upon prior work on quantal response (QR) (Mc-
Fadden (1976)). It proposes a utility function called Subjective Utility (SUai (x); i ∈ T ), which
is a weighted linear combination of key features that are considered to be the most important in
each adversary decision-making step: SUai (x) = ω1xi + ω2R

a
i + ω3P

a
i . The probability that an

adversary ‘a’ will attack target i is given in Eqn. 1. The optimal strategy to deploy against the adver-
sary is then obtained by maximizing the defender’s expected utility (Eqn. 2) based on a learned ω.

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(1) max
x∈X

[∑
i∈T

Udi (x) qi (ω |x)

]
(2)

3. Belief Modeling Game

Figure 1.
Game Interface for simulated online belief modeling game

We conducted human subjects exper-
iments on AMT to collect data about
how humans update their beliefs about
the defender’s mixed strategy while
acting as adversaries based on their
observations about the defender. Be-
low is an overview of our experimen-
tal game, the payoff structures and de-
fender strategies used and the model
categories tested.

3.1 Game Overview

In our game, human subjects play the
role of poachers (a type of adversary) who are trying to estimate the defender’s mixed strategy by
observing 10 consecutive pure strategies sampled independently from the corresponding defender
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mixed strategy. Each pure strategy corresponds to the strategy used by the defender on one particular
day for patrolling the protected park area. At the end of each day, the participants were required to
enter their beliefs about the defender’s mixed strategy based on their pure strategy observations till
the current day. The game interface is shown in Fig. 1.

In our game, the Google maps view of the portion of the park shown in the interface is divided
into a 3*3 grid, i.e. 9 distinct target cells. Overlaid on this map to the right of the interface is a
heat-map which represents the participants’ current belief about the rangers’ mixed strategy x —
a cell i where the participant believes that a defender has higher coverage probability xi is shown
more in red, while a cell with lower coverage probability is shown more in green. The participants
can use the sliders, text boxes and +/- buttons to enter their beliefs about the percentage likelihood
of a ranger being present in each cell and this change will be reflected by the color of that cell. As
the subjects play the game, they are given information about the presence/absence of a ranger for
each target i for each day as shown by the map in the left of the game interface. Fig. 1 shows
the defender’s pure strategy for Day 2 in the map on the left (three rangers are circled) and in the
right map the participant is currently entering his/her beliefs (64% coverage on top leftmost target)
about the defender’s strategy after having observed two days of defender patrols. The participant
can check all the previous days’ patrols (pure strategies) by scrolling down in the left side of the
interface before entering their beliefs. In our game, M = 3 rangers were protecting 3 out of 9 grid
cells in the park. So, for any day, only 3 out of the 9 targets are shown to be protected in the per day
maps shown in the left of the interface.

As mentioned earlier, the pure strategies shown to the left were drawn independently from a
defender mixed strategy x. This is the mixed strategy that the participants were asked to estimate
based on the pure strategy observations. This setting simulates a real-world situation where poachers
have knowledge of previous ranger deployments in terms of their exact locations per day and they
are tasked to form beliefs about the actual mixed strategy based on these observations. In this paper
we are only interested in modeling the belief formation and update procedures in such scenarios and
hence only collect data about their beliefs and do not ask them to choose a target to attack after any
day of play in the game.

3.2 Experimental Procedure

After an introduction to the game setting, the participants had to answer two validation questions
which tested their understanding of the game, and were allowed to proceed to a trial and then the
actual game if they answered them correctly. In the actual game, one of four mixed strategies was
randomly selected for each participant to eliminate any bias and he/she was shown the 10 pure
strategies sampled from the chosen mixed strategy.

Payment Scheme: We set up the payment scheme to not only reward participation but also to
incentivize truthful reporting of the participants’ beliefs. Specifically, each participant was paid a
‘base compensation’ for participation. To motivate the participants to enter their beliefs accurately
after each day, we gave them an incentive called ‘performance bonus’, based on the difference be-
tween the entered beliefs after each day and the actual mixed strategy from which the pure strategies
were sampled. The total reward was the sum of their performance bonuses and base compensation.
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Payoff Structures: We randomly generated two game boards showing how animals are spread
out across the 9 targets, which determines the payoff structure for the game. We henceforth refer to
payoff structures and animal density structures interchangeably in this paper. The total number of
animals on the board is constant across games (= 40). Figs. 2(a)–2(b) show animal densities used;
they are referred to as ADS1 and ADS2 respectively in the paper.

(a) ADS1 (b) ADS2

(c) Maximin (d) SUQR

Figure 2.
(a,b): Animal Densities; (c)

Maximin; (d) SUQR

Defender Strategies: We experimented with four different
defender strategies to test how humans form and update their
beliefs when faced with different strategies. These are: (i) Max-
imin, (ii) Proportional, (iii) SUQR, and (iv) Uniform. We show
Maximin and SUQR strategies for ADS1 in Figs. 2(c) – 2(d).
Proportional strategy puts coverage probabilities on targets in
proportion to the number of animals in that target. In a Uniform
strategy, each target is covered with equal probability. Since
three defenders were protecting 9 targets, sum of the coverages
(in terms of percentages) is ≤ 300. We ensured that participants
do not enter beliefs for each target outside the range of [0,100]
and/or enter beliefs such that the sum is more than 300 by show-
ing a pop-up message if they attempted to submit beliefs outside
the allowable range or if the sum is ≥ 300. Coverages and adversary’s beliefs about the coverages
can be computed in terms of either probabilities or percentages.

We deployed our game on AMT and collected data for 191 and 160 participants for ADS1 and
ADS2 respectively. Since each participant was randomly allocated to a condition corresponding to
one of the four mixed strategies, the number of participants for each condition in the resulting data
set varies. In our experiments with ADS1, Maximin, Proportional, SUQR and Uniform strategies
were played by 35, 55, 44 and 57 participants respectively. We divided each of these four groups of
participants randomly into 10 train-test splits with 70% of the participants in the training data and
remaining 30% from the same split in the test data. Training data (whenever used) is for learning
our models. We will make belief predictions for participants in the test sets. Non-learning models
were evaluated on the same test sets as the learning models to enable fair comparison.

Models Tested: The literature on belief modeling can be broadly categorized as: (a) Bayesian
updating models; (b) Heuristic belief updating; (c) Bayesian Theory of Mind (BTOM); and (d)
Level-k models. In this paper, we will provide a description of models that fall in categories (a) and
(b) only, as these were earlier shown to be the best performing models in the SSG literature and
other related fields (e.g., psychology). We have extensively experimented with such models and we
present those results in Sec. 7. We will not be presenting models that belong to categories (c) and (d)
because: BTOM models (Baker et al. (2011)) use POMDPs to model beliefs, and are therefore not
easily applicable in our setting due to infinite state space (all possible mixed strategies); and Level-k
models (Wright & Leyton-Brown (2014)) have only been used to predict actions in simultaneous-
move games and it is non-trivial to adapt to our belief updating setting in repeated SSGs.

Earlier work on belief modeling in categories (a) and (b) can be broadly classified into two types
based on the assumption about the amount of information available. First is the case when no prior
data is available to learn about the belief formation and update process of human agents in a given
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Figure 3. Model names and assumptions

situation. This is what has been used in SSGs. Second is the scenario when historical belief update
data for a group of human agents is available (training set). This facilitates learning a generalized
model of human belief formation and update, and apply the learned model to predict belief updates
for a previously unknown set of human agents (testing set). The assumption about having access
to training data is common in the psychology literature and we adapt one popular model from that
literature to SSGs. In this paper, we will also discuss another setting where, in addition to the
training data about a group of participants, we will use information about the previously unseen
(test set) participants’ past beliefs (when available) to predict their future beliefs. Fig. 3 provides a
summary of the models presented in this paper along with the corresponding assumptions.

4. Setting without training data

Here we discuss models for the situation where we do not have any training data to learn the adver-
sary’s belief update procedure.

4.1 Existing work

In the absence of any training data, previous work on modeling adversary beliefs in SSGs has
focused on two aspects depending on assumptions about the adversary’s rationality: (i) Bayesian
update models typically associated with a perfectly rational adversary (An et al. (2012)); and (ii)
heuristic belief update associated with “boundedly rational adversaries” (Pita et al. (2010)).

Perfectly Rational Adversary: An et al. (2012) proposed a Stackelberg Game with Limited
Observation (SGLS) model where a perfectly rational adversary updates his beliefs about the de-
fender’s actual mixed strategy x given his prior beliefs and τ observations, where each observation is
one of the defender’s pure strategies j ∈ P . They represent the sequence of observations compactly
in terms of an observation vector Or =< orj > in which orj is the number of times pure strategy j
is observed until day r. They represented the adversary’s belief distribution over the set of all pure
strategies as Dirichlet distributions characterized by a parameter vector α =< α1, ..., α|P|>. They
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assumed uniform Dirichlet distribution as prior. Then they use Bayesian updates to compute the
posterior belief distribution over pure strategies based on the observation vector Or. For example,
assuming αk = 0;∀k = 1to|P| before day 1, and then after 5 days (one observation per day) we
have observed pure strategy j ∈ P three times, then o5

j = 3 and the posterior αj + o5
j = 0 + 3 = 3

at the end of day 5. The adversary’s belief bri about the marginal coverage of target i after the rth

observation could then be computed from the posterior belief distribution over pure strategies as in
Eqn. 3. In our experimental setting, with 9 targets and 3 defenders, |P| =

(
9
3

)
= 84, and τ=10 (total

number of days of observations). ji = 1 (or 0) depending on whether target i is protected in pure
strategy j (or not). This model will be referred to as Bu, where B represents Bayesian models and
u stands for uniform prior.

bri =

∑
j∈P

ji(αj + orj + 1)∑
j∈P

αj + |P|+ τ
(3)

Boundedly Rational Adversary: Pita et al. (2010) proposed a linear mixture model to account
for the belief update of boundedly rational adversaries. They model the adversary’s beliefs b based
on a weighted linear combination of two components: a prior belief ρ and the actual mixed strategy
x. For any target i, this is shown in Eqn. 4. They assume the prior to be an uniform distribution of
the number of defenders over the given set of targets. They further assume a fixed weight (µ ∈ [0, 1])
on the prior for their experimental setting and do not provide any justification for their choice of the
fixed weight. So, given 9 targets and 3 defenders, ρi at any target i is 300

9 ≈ 33. If xi at some target
i is 50 and µ is 0.60, then the adversary’s belief bi (in percentage) about the defender’s coverage at
target i is 0.60∗33 + (1−0.60)∗50 ≈ 40. We will refer to this model as 0.6M

A
u , where M denotes

mixture models, A represents actual mixed strategy and 0.6 is the fixed weight on the prior.

bi = µ ∗ ρi + (1− µ) ∗ xi (4)

4.2 Proposed Models

For this setting where we have no training data, we first applied the above models and observed
that these models perform poorly in terms of predicting beliefs of the adversaries. Therefore, we
developed new models assuming both perfectly rational and boundedly rational adversaries that im-
prove the state-of-the-art by providing new methods for (a) prior initialization and (b) the updating
scheme. Performance results for all models proposed in this section are reported in Sec. 7.1.

4.2.1 Perfectly Rational Adversary

In this section, we consider two scenarios for modeling perfectly rational adversaries that make
different assumptions about the amount of information the adversary may have about the strategies
the defender is employing. In the first setting, we assume that the adversary knows nothing about
the possible set of defender strategies. In the second setting, the adversary knows a set of candidate
strategies of size |Θ| (=4 in our case) the defender may employ but does not know which strat-
egy among this set the defender chooses to implement. In our experiments, this candidate set is
composed of Maximin, SUQR, Uniform and Proportional strategies. The motivation for the second
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scenario is that there may be an inside informant on the defender side who has secretly revealed this
information to the adversary, and therefore we were interested in investigating the performance of a
belief prediction model that accounts for this.

Uninformed Adversary: In the existing belief update model for a perfectly rational adversary
in SSGs discussed in Section 4.1 , the adversary has no information about the types of strategies
the defender may deploy. In their model, An et al. (2012) further assume that the adversary (a)
starts from a uniform Dirichlet prior and (b) only updates the prior corresponding to the observed
pure strategies. We relax these assumptions and improve the existing approach by proposing an
informative Dirichlet prior based on domain features and a similarity based updating mechanism.

We hypothesize that instead of starting from a uniform Dirichlet prior the adversary may start
with an informative Dirichlet prior based on the features of the domain. Intuitively, in our game,
since animal density is the most important factor in determining defender allocations in the wildlife
crime domain, we compute an informative Dirichlet prior which puts prior values on each pure strat-
egy in proportion to the sum of the animal densities at the targets protected by that pure strategy. The
intuition behind our novel updating method is generalizing our observations about pure strategies
employed by the defender to other, similar pure strategies so that a more informed updated belief
can be generated even after making limited pure strategy observations. In this work, we say that
two pure strategies are similar if they differ in terms of defender allocation in only one of the three
protected targets. For example, in Eqn. 3, if a pure strategy j ∈ P is observed three times in 5 days,
then not only is αj + o5

j = 3, but also αk + o5
k = 3 for pure strategy k which was never observed

during the 5-day timeframe but is similar to pure strategy j. This model will be referred to as Bs
i ,

where s denotes the similarity based updating procedure and i denotes informative prior.
Informed Adversary: Let us denote the set of mixed strategies that the defender chooses from

as Θ =< θ1, θ2, ..., θ|Θ| >. For the case where the adversary has complete knowledge that the
defender is deploying one of these |Θ| different mixed strategies, a perfectly rational adversary will
perform Bayesian updates on their belief distribution over these strategies (represented as ξ =<
ξ1, ξ2, ..., ξ|Θ| >) based on the sequence of pure strategy observations. The updated probability for
the kth mixed strategy θk (a vector denoting the coverage probabilities over all the targets) after
observing the pure strategy on day r, denoted as ξrk is computed using Eqn. 5 , where Sr denotes
the set of all targets protected in pure strategy observation on day r, and xki denotes the coverage
probability at target i for the kth mixed strategy. His belief of the defender’s mixed strategy after
observing pure strategy on day r (denoted as br, which is a vector denoting the beliefs over all
the targets) can then be computed as a weighted average of all the mixed strategies, where the
weights are the updated probabilities (Eqn. 6). We denote this model as IBu, where I denotes
informed adversary and u indicates that we start with a uniform prior over the set of mixed strategies.

ξrk =
ξr−1
k ∗

∏
i∈Sr

xki∑
k(ξ

r−1
k ∗

∏
i∈Sr

xki )
(5) br =

∑
k(ξ

r
k ∗ θk)∑
k(ξ

r
k)

(6)

4.2.2 Boundedly Rational Adversary

The previously proposed belief update model for boundedly rational adversaries in an SSG setting
with no training data combines the actual mixed strategy of the defender with a uniform prior belief
about the coverage at each target by keeping a fixed weight on the prior for all days. The existing
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model does not offer a way to weight the prior beliefs over days of the game. The construction of
the model has a number of shortcomings that may explain why the existing model performs poorly
in experiments (see Sec. 7.1).

First, the adversary would only observe the defender’s pure strategies and not know the exact
mixed strategy. Therefore, he can only reason based on the empirical probability distribution of
protection at each target. Second, he can have non-uniform prior beliefs about the coverage prob-
abilities. Finally, an exploration of different weighting methods is necessary as the adversary can
have any arbitrary weighting function for the prior weights over days of the game. None of these has
ever been taken into consideration in existing work in SSGs. Our contributions here are to address
these shortcomings and improve the state-of-the-art belief model for boundedly rational adversaries.

First, we incorporate in the existing model (Eqn. 4) the empirical mixed strategy (instead of
actual mixed strategy) of the defender computed using all the pure strategy observations till the
current day under consideration. So, when reasoning about the adversary’s beliefs for day i, our
model (Eqn. 7) would compute the empirical strategy (xE) based on all pure strategy observations
until day i. Second, since we assume that the defender has no prior training data about belief
updates, it is not possible to learn about the belief update patterns of humans in this scenario.
Therefore, instead of learning a function of how the adversary’s reliance on his prior beliefs changes
over days, we experiment with three different types of discounting functions and compare their
performances: (a) linear, (b) hyperbolic, and (c) exponential. We chose hyperbolic and exponential
since these are the most popular discounting methods in the literature (Samuelson (1937); Farmer &
Geanakoplos (2009)). These models are denoted as linME

u , hypME
u and expM

E
u , where u denotes

uniform prior, E denotes that empirical strategy, and lin, hyp and exp denote linear, hyperbolic and
exponential discounting functions respectively. Linear discounting based mixture model is shown
in Eqn. 7. Similarly for hyperbolic (Eqn. 8) and exponential discounting (Eqn. 9).

b = µlin ∗ ρu + (1− µlin) ∗ xE (7)

b = µhyp ∗ ρu + (1− µhyp) ∗ xE (8)

b = µexp ∗ ρu + (1− µexp) ∗ xE (9)

µ =< µ1, µ2, ..., µτ > denotes the weight on the prior for each of the τ days of observations. In
terms of the ith day of the game, µhyp and µexp are computed as in Eqns. 10 and 11 respectively.

µhypi =
1

i
(10) µexpi =

1

exp(i− 1)
(11)

Although the above models assume a uniform prior, we observed during our analysis that not all
participants start with a prior close to the uniform prior; in fact some participants start with a prior
similar to the proportional prior and then update their beliefs. Since it is unknown which category of
prior belief a previously unseen adversary would belong to, we apply a model linearME

{u,p} shown
in Eqn. 12 that uses a weighted (weight=β) combination of uniform and proportional strategies as
the prior (Eqn. 13). Due to absence of data to learn from, we assume β=0.5 in our experiments.

b = µlin ∗ ρcomb + (1− µlin) ∗ xE (12) ρcomb = β ∗ ρu + (1− β) ∗ ρp (13)
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5. Setting with training data

This section discusses models for the situation where we have training data to learn the adver-
sary’s belief update procedure. Although we have experimented with a learning version (denoted
as Bs

learn, where we learn the adversary’s prior belief and do similar pure strategy based updating)
of the non-learning Bayesian update model Bi

s, we show in Sec. 7.2 that this model did not yield
promising results. Therefore, we only discuss heuristic belief update models for the learning setting.

5.1 Existing work

One popular learning belief model in psychology is a non-linear mixture model called the log-odds
model (See et al. (2006)) shown in Eqn. 14. This model computes the log of odds metric between
an event F (in our setting it is the adversary’s belief bi that a target i is covered by the defender) and
the alternate event A (the adversary’s belief that a target is not covered by the defender, i.e., (1-bi)).

ln
bi

1− bi
= a1 + a2 ∗ ln

niF
niA

+ a3 ∗ ln
f i(F )

f i(A)
(14)

Here, niF (niA) represents the adversary’s prior belief about the number of ways target i is protected
(or not). Similarly, f i(F ) and f i(A) represent the influence of the actual observations on the beliefs

formed by the adversaries. lnn
i
F

ni
A

and lnf
i(F )
f i(A)

denote the influence of the adversary’s prior beliefs
and actual observations respectively on his future beliefs. Parameters a1, a2 and a3 are learned by
performing linear regression on the training data. We call this model learnlogu.

5.2 Proposed Models

In order to explore the benefits of having prior training data on model performances, here we propose
two types of learning models assuming boundedly rational adversaries: (i) linear mixture models;
and (ii) clustering based models that exploit the heterogeneity in adversary behavior.

Linear Mixture Models: Given training data about belief formation and update from a set of
participants, the defender can learn the weighting function for the prior that best fits the training
data. Here, by best fit we mean that we compute the weight vector µ =< µ1, µ2, ..., µτ > (where
τ is the number of days) that minimizes the average root mean squared error (rmse) between the
model’s predicted beliefs and those of the training set participants. Therefore, instead of using a
fixed weighting function as in our proposed models in Section 4.2, we use model learnME

u shown
in Eqn. 15. Consistent with our non-learning model with combined prior in Sec. 4.2, we propose
and experiment with a learning variant learnME

{u,p} (Eqn. 16) where we learn β in Eqn. 13 along
with µ.

b = µlearn ∗ ρu + (1− µlearn) ∗ xE (15) b = µlearn ∗ ρlearncomb + (1− µlearn) ∗ xE (16)

Clustering based Models: During our analysis of the performances of different models on the
belief data collected on AMT, we observed the following heterogeneous behavior among adversaries
in terms of their belief formation and update process. Adversaries can be clustered into four distinct
groups based on their belief updates: (a) participants who start from a uniform prior and then update
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their beliefs by taking into account the empirical distribution, (b) participants who start from a
proportional prior and then update their beliefs by taking into account the empirical distribution,
(c) participants who only update based on the empirical distribution and start with no prior, and (d)
participants whose updates have no clear pattern and could be termed as random players.

This observation inspired us to apply clustering techniques on the belief data of the training set
participants, learn a separate model for each cluster and use the learned models to predict the beliefs
of test set participants. We propose a weighted clustering based approach to model and predict
beliefs of a heterogeneous population of adversaries. First, we perform c-means clustering on the
10 day belief data of the training set participants to determine the clusters. Once the clusters are
generated, we learn our model learnME

{u,p} (Eqn. 16) for each of the c clusters. learnM
E
{u,p} was

chosen as it performed best (see Section 7.2) among all previously discussed models, and it is also
the most generalized mixture model presented. Next, we compute the model’s predicted beliefs for
any participant after observing pure strategy for day r as a weighted average of the predictions of
each of the models: br =

∑c
i=1 γi∗ibr∑c

i=1 γi
. Here, γi = Nc is the weight given to cluster i and is the

number of training set participants that belong to that cluster. ib
r denotes the belief predicted for

day r by the learned model learnME
{u,p} for cluster i. The intuition behind weighting each cluster’s

model with the number of participants in that cluster is that we assume that the test set participant
distribution will be similar to the training set. So, we give higher importance to clusters containing
higher number of participants, and vice versa. We will refer to this model as B-REACTwtc .

6. Setting with training and test data

In the setting studied in Section 5, training data collected from a group of participants are used to
predict belief updates of a completely new set of participants in test set. In this section, we assume
that in addition to the training data we also have some data collected from the participants in the test
set (earlier days of belief updates), which are used to predict belief updates for the following days.

Instance based Learning Models: Instance-Based Learning Theory (IBLT) (Gonzalez et al.
(2003)) is a popular model used in Cognitive Science that attempts to explain human decision mak-
ing in dynamic tasks. Based on past data about various situations and actions of different agents
in such situations, IBLT attempts to predict the behavior of an agent in some situation by reason-
ing about known actions of other agents in similar situations. We propose an IBL model for belief
prediction of an unknown adversary Tm after observing pure strategy jr on day r.

We assume that in addition to knowing beliefs over all days of a set of adversaries (training
set), we also gain information about the beliefs of the previously unseen test set adversaries at the
end of each day. This could be achieved by placing an informant or spy among the poachers who
would provide the defender information about the poacher’s day-to-day beliefs. This allows the
defender to make future belief predictions about the test set adversaries using their leaked beliefs
till the current day by reasoning about beliefs of similar adversaries that are in the training data. In
order to achieve this task, our model first computes similarity between beliefs (until day r − 1) of a
test set adversary and beliefs (until day r − 1) of all training set adversaries. We then choose the k
most similar training set adversaries and compute the belief of test set adversary Tm upon observing
the rth pure strategy based on day r beliefs of the k most similar training set participants based on

11
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Eqn. 17, where θi ≡ 1
d(i,Tm)2

and d(i, Tm) denotes the dissimilarity between the test set adversary
Tm and its ith most similar training set adversary.

Tmbr =

∑k
i=1 θi ∗ kbr∑k

i=1 θi
(17)

We will refer to this as the IBLk model, e.g., a model based on four nearest neighbors will be
referred to as IBLk=4. Comparison results for various values of k are shown in Section 7.3.
Clustering based Models: We customize our previously proposed clustering based model to take
advantage of additional information about the test set participants (when available). We consider
two scenarios of information availability: (a) before each day the defender has complete information
about a test set adversary’s beliefs till the previous day– this is same as the assumption for IBL
models; and, (b) the defender knows the exact cluster a test set adversary belongs to.

For case (a), we compute for each test set adversary, the nearest (k=1) cluster he belongs to
based on the known beliefs of that participant until day i− 1 and apply the model for that cluster to
predict his/her day i beliefs. This model is represented as B-REACT k=1

c .
For case (b), since we assume that the exact cluster for each test set adversary is known to the

defender, we apply the corresponding cluster’s learned model to predict their beliefs for any day
i. This is a somewhat unrealistic best-case scenario which gives us an important lower bound and
therefore forms a baseline for comparing other models. In order to implement this, an important
question is: how do we determine the exact cluster for a test set participant? In our game, since
we have each participant’s belief information for each of the 10 days, we assume the ideal scenario
where we know the beliefs of all the 10 days for any test set participant ahead of time. This allows
us to perform an exact nearest neighbor computation w.r.t. the c cluster centroids and determine the
cluster for any test set adversary. The model is henceforth referred to as bestB − REACT k=1

c and
its performance is shown in Sec. 7.3.

7. Experimental Results

In this section, we present results for existing and our proposed models (see Fig. 3 for all model
names and their assumptions). We report the performance of all the models in estimating the beliefs
of the test data set participants in terms of the average root mean squared errors (rmse) between the
human entered beliefs and the models’ predicted beliefs. The averaging is done over all targets for
all days over the total number of participants in the respective test sets and over the total number of
train-test splits. We show results onADS1 data in the paper. Results onADS2 have the same trends
for all the models that we tested, thus confirming the value of our modeling and analysis. In the
figures, model names are on the x-axis and average rmse (lower is better) is on the y-axis. We start y-
axis from 8 instead of 0 to show differences between the model performances more prominently. The
four defender strategies for which we conducted our experiments (Maximin, Proportional, SUQR
and Uniform) are shown by the colored/patterned bars for each model in each of the figures. Any
mention of statistical significance indicates that the discussed model performances are statistically
significant based on two-tailed t-tests at confidence=0.05.
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Figure 4. Belief Estimation Errors (average RMSE)

7.1 Setting without training data

In Fig. 4(a) and 4(d) we first show performances for previously existing and our proposed models
that do not learn on training data. We discuss important observations about these models below:

Comparison w.r.t. our best model: In Fig. 4(a), we demonstrate that our best performing
non-learning model linME

u,p completely outperforms (statistically significant) the two existing non-
learning models (Bu and 0.6M

A
u ) in SSGs in terms of predicting beliefs for any defender strategy.

Furthermore, although for existing models, Maximin and SUQR are hardest to estimate due to
their non-intuitiveness (as is evident by comparing their performances on Maximin and SUQR data
against their performances on Proportional and Uniform data), our best model’s performance on
Maximin and SUQR defender strategies is similar to intuitive strategies such as Uniform and Pro-
portional. Our model’s performance further highlights the impact of using the empirical strategy
instead of actual mixed strategy, a linear discounting function to capture the adversary’s decreasing
reliance on their prior beliefs, and a weighted combination of uniform and proportional prior so as
to perform well against an unknown adversary who can belong to either one of these two groups.

Informed prior and similarity based updating improves performance: In Fig. 4(a), we
observe that the performance of the previously existing Bayesian model Bu is significantly worse
(20.73 to 16.11 for Maximin data) as compared to our proposed model Bs

i . This emphasizes the
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benefit of starting with an informative prior and updating similar pure strategies when faced with
limited observations. The informed rational adversary model IBu which assumes that adversaries
have prior knowledge about the set of defender mixed strategies, doesn’t perform as well as the
uninformed adversary models which make no such assumption.

Linear discounting performs best: We show in Fig. 4(d) that a simple linearly decreasing
weighting function on the prior belief in the mixture models (linME

u ) surprisingly performs simi-
larly or better when compared to models that consider more complex discounting functions such as
hyperbolic (hypME

u ) and exponential (expME
u ). Results for linME

u are statistically significant w.r.t.
expM

E
u for all strategies but only on Maximin and Uniform datasets w.r.t. hypME

u .

7.2 Setting with training data

We show performances for previously existing and our proposed learning models in Fig. 4(b).
Clustering significantly improves performance: First, we show that our proposed clustering

based model B-REACTwtc with c = 4 clusters outperforms (statistically significant) the exist-
ing learning model in the literature (learnlogu). Second, it also outperforms the best non-learning
model linME

u,p More importantly, it outperforms all other learning models (Bs
learn, learnME

u and
learnM

E
u,p). The significant difference between, the non-clustering model (learnME

u,p) andB-REACTwtc=4

which learns the same model but on different clusters, can be attributed to our earlier observation in
Sec. 5.2 about the four distinct groups of adversary belief updates. This is also consistent with our
observation about the weights learned for each model for each of the four clusters: (a) Cluster 1:
µlearn decreases almost linearly from 0.95 to 0.05 over 10 days, and the fixed weight on proportional
prior (1−β in Eqn. 13) is high (approx. 0.95 for most datasets), representing a group of adversaries
who start with proportional prior and then linearly updates their reliance on the empirical strategy as
they observe more pure strategies; (b) Cluster 2: Both µlearn and β are 0, representing adversaries
who only update based on the empirical strategy and do not start from any prior; (c) Cluster 3: It
represents a group of adversaries who start with a uniform prior and then update their beliefs with
more importance on their observations as days progress– the learned model has high β (approx.
0.97 for most datasets) and a µ that is high initially but gradually decreases (approx. 0.98 to 0.23);
and, (d) Cluster 4: A high weight on β (approx. 0.97) and a µ that decreases from 0.90 to 0.50
(approx.), thus representing adversaries who start with a uniform prior and update at random on
most of the days.

Learning Dirichlet prior improves performance: Learning a Dirichlet prior significantly im-
proves the predictions of the resulting model (Bs

learn). For Proportional data, the average rmse for
Bs
learn is 11.86 as opposed to 17.47 for the original model with no training data (Bu in Fig. 4(a)).

Learning weights in mixture models do not help: learnME
u,p is similar in performance to the

best non-learning mixture model linME
u,p. This is a surprising observation, especially because we

observed significant improvement in performances due to learning for perfectly rational adversary
models (Bs

i vsBu in Fig. 4(a)) . Further investigation reveals that the shape of the learned weighting
function is approximately linearly decreasing for majority of the datasets, and hence the similar
performance. Although surprising, this is a significant observation because it demonstrates that in
the absence of data we could simply apply a linear decreasing weighting function irrespective of
the deployed mixed strategy and expect to perform as well as if we had prior data to learn from.
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Furthermore, this demonstrates that human adversaries have extremely strong initial biases towards
a prior strategy in our game settings and they only linearly decrease their reliance on that bias over
days of the game.

7.3 Setting with training and testing data

This section discusses results for models that use both training as well as additional information
of test set adversaries to predict future beliefs. In Fig. 4(c) we compare the performances of such
models against the best performing model discussed in the previous section (B-REACTwtc=4).

Testing set information does not help clustering models: B-REACT k=1
c=4 , a model that uses

past beliefs of test set participants to infer their clusters, has similar performance to B-REACTwtc=4

which does not have this information. An ideal model that assumes complete knowledge about each
test participant’s exact cluster (bestB-REACT k=1

c=4 has rmse of 9.8 for Proportional data) shows
improved performance over B-REACTwtc=4 which has an rmse of 10.08. However, the near similar
performance of B-REACTwtc=4 to models that assume additional information about test set adver-
saries demonstrates the validity of our weighted clustering based technique towards making accurate
predictions about adversary beliefs even in the absence of additional information.

IBL models perform best: IBL models outperform (rmse for IBLk=3 is 8.93 for Proportional
dataset) B-REACTwtc=4 (rmse of 10.08), B-REACT k=1

c=4 and bestB-REACT k=1
c=4 with statistical

significance. This shows that, while clustering based models suffer from abstraction due to cluster-
ing, IBL models are able to make more personalized predictions when information about past
beliefs of test set participants is available.

8. Conclusion

In this paper, we address the lack of empirical evaluation of belief formation models by conducting
the first-of-its-kind systematic comparison of existing and new proposed models on belief data col-
lected through human subjects experiments on AMT. We highlight three key observations. First, we
observed surprisingly that a linear discounting function best fits adversary behavior in our setting
(and it is also the weighting function learned), as opposed to more complex weighting functions,
such as hyperbolic and exponential discounting. Second, we demonstrated the benefit of modeling
heterogeneous groups of adversaries for improved belief prediction. We observed the presence of
four different groups based on their belief formation and update procedure. Third, we show that our
models significantly outperform existing models; the difference in performance further increases
when using learning models in data-driven settings.
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